[1] CARTER S P, BLANKENSHIP D D, PETERS M E, et al. Radar-based subglacial lake classification in Antarctica[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(3): Q03016. [2] 温家洪. 南极冰下湖的发现及其意义[J]. 极地研究, 1998, 10(2): 76-81. WEN Jiahong. A primary introduction of Antarctic subglacial lakes[J]. Chinese Journal of Polar Research, 1998, 10(2): 76-81. [3] ZOTIKOV I A. Bottom melting in the central zone of the ice shield on the Antarctic continent and its influence upon the present balance of the ice mass[J]. International Association of Scientific Hydrology. Bulletin, 1963, 8(1): 36-44. [4] ROBIN G Q, SWITHINBANK C M W, SMITH B M E. Radio echo exploration of the Antarctic ice sheet[C]//Proceedings of IASH Publication 86: International Symposium on Antarctic Glaciological Exploration. Hanover: [s.n.], 1970: 97-115. [5] OSWALD G K A, ROBIN G D Q. Lakes beneath the Antarctic ice sheet[J]. Nature, 1973, 245(5423): 251-254. [6] SIEGERT M J, DOWDESWELL J A, GORMAN M R, et al. An inventory of Antarctic sub-glacial lakes[J]. Antarctic Science, 1996, 8(3): 281-286. [7] SIEGERT M J, CARTER S, TABACCO I, et al. A revised inventory of Antarctic subglacial lakes[J]. Antarctic Science, 2005, 17(3): 453-460. [8] GRAY L, JOUGHIN I, TULACZYK S, et al. Evidence for subglacial water transport in the West Antarctic ice sheet through three-dimensional satellite radar interferometry[J]. Geophysical Research Letters, 2005, 32(3): L03501. [9] WINGHAM D J, SIEGERT M J, SHEPHERD A, et al. Rapid discharge connects Antarctic subglacial lakes[J]. Nature, 2006, 440(7087): 1033-1036. [10] FRICKER H A, SCAMBOS T, BINDSCHADLER R, et al. An active subglacial water system in West Antarctica mapped from space[J]. Science, 2007, 315(5818): 1544-1548. [11] SMITH B E, FRICKER H A, JOUGHIN I R, et al. An inventory of active subglacial lakes in Antarctica detected by ICESat (2003—2008)[J]. Journal of Glaciology, 2009, 55(192): 573-595. [12] WRIGHT A, SIEGERT M. A fourth inventory of Antarctic subglacial lakes[J]. Antarctic Science, 2012, 24(6): 659-664. [13] KIM B H, LEE C K, SEO K W, et al. Active subglacial lakes and channelized water flow beneath the Kamb ice stream[J]. The Cryosphere, 2016, 10(6): 2971-2980. [14] SMITH B E, GOURMELEN N, HUTH A, et al. Connected subglacial lake drainage beneath Thwaites Glacier, West Antarctica[J]. The Cryosphere, 2017, 11(1): 451-467. [15] FRICKER H A, SCAMBOS T. Connected subglacial lake activity on lower Mercer and Whillans ice streams, West Antarctica, 2003—2008[J]. Journal of Glaciology, 2009, 55(190): 303-315. [16] FRICKER H A, SCAMBOS T, CARTER S, et al. Synthesizing multiple remote-sensing techniques for subglacial hydrologic mapping: application to a lake system beneath MacAyeal Ice Stream, West Antarctica[J]. Journal of Glaciology, 2017, 56(196): 187-199. [17] FRICKER H A, CARTER S P, BELL R E, et al. Active lakes of recovery ice stream, East Antarctica: a bedrock-controlled subglacial hydrological system[J]. Journal of Glaciology, 2014, 60(223): 1015-1030. [18] STEARNS L A, SMITH B E, HAMILTON G S. Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods[J]. Nature Geoscience, 2008, 1(12): 827-831. [19] SCAMBOS T A, BERTHIER E, SHUMAN C A. The triggering of subglacial lake drainage during rapid glacier drawdown: crane glacier, Antarctic Peninsula[J]. Annals of Glaciology, 2011, 52(59): 74-82. [20] SIEGFRIED M R, FRICKER H A, CARTER S P, et al. Episodic ice velocity fluctuations triggered by a subglacial flood in West Antarctica[J]. Geophysical Research Letters, 2016, 43(6): 2640-2648. [21] SIEGFRIED M R, FRICKER H A. Thirteen years of subglacial lake activity in Antarctica from multi-mission satellite altimetry[J]. Annals of Glaciology, 2018, 59(76pt1): 42-55. [22] WRIGHT A P, YOUNG D A, BAMBER J L, et al. Subglacial hydrological connectivity within the Byrd glacier catchment, East Antarctica[J]. Journal of Glaciology, 2014, 60(220): 345-352. [23] NGUYEN A T, HERRING T A. Analysis of ICESat data using Kalman filter and Kriging to study height changes in East Antarctica[J]. Geophysical Research Letters, 2005, 32(23): L23S03. [24] FRICKER H A, BORSA A, MINSTER B, et al. Assessment of ICESat performance at the Salar de Uyuni, Bolivia[J]. Geophysical Research Letters, 2005, 32(21): L21S06. [25] 陈国栋, 李建成, 褚永海, 等. 利用ICESat数据确定北冰洋海冰出水高度——以2005—2006年为例[J]. 测绘学报, 2015, 44(6): 625-633. DOI: 10.11947/j.AGCS.2015.20140478. CHEN Guodong, LI Jiancheng, CHU Yonghai, et al. Determination of sea ice freeboard in Arctic from ICESat: case study of 2005—2006[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(6): 625-633. DOI: 10.11947/j.AGCS.2015.20140478. [26] SMITH B E, BENTLEY C R, RAYMOND C F. Recent elevation changes on the ice streams and ridges of the Ross Embayment from ICESat crossovers[J]. Geophysical Research Letters, 2005, 32(21): L21S09. [27] EWERT H, GROH A, DIETRICH R. Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE[J]. Journal of Geodynamics, 2012, 59-60: 111-123. [28] 李斐, 宋国云, 杨元德, 等. 南极Dome A地区高精度DEM的建立——顾及波形重定、坡度改正及数据融合[J]. 测绘学报, 2017, 46(4): 403-410. DOI: 10.11947/j.AGCS.2017.20160486. LI Fei, SONG Guoyun, YANG Yuande, et al. Establishment of high precision DEM in Antarctic Dome A area with taking the waveform retracking, slope correction and the data fusion into account[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(4): 403-410. DOI: 10.11947/j.AGCS.2017.20160486. [29] WINGHAM D J. CryoSat: a mission to determine fluctuations in the Earth’s ice fields[C]//Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Toronto: IEEE, 2002. [30] SCHRÖDER L, HORWATH M, DIETRICH R, et al. Four decades of Antarctic surface elevation changes frommulti-mission satellite altimetry[J]. The Cryosphere, 2019, 13(2): 427-449. [31] MCMILLAN M, CORR H, SHEPHERD A, et al. Three-dimensional mapping by CryoSat-2 of subglacial lake volume changes[J]. Geophysical Research Letters, 2013, 40(16): 4321-4327. [32] CLARKE G K C. Glaciology: ice-sheet plumbing in Antarctica[J]. Nature, 2006, 440(7087): 1000-1001. [33] 赵秋阳, 周春霞, 墙强. 利用ICESat测高数据的东南极Totten冰川流域冰下湖活动监测及水文分析[J]. 测绘地理信息, 2017, 42(4): 27-31. ZHAO Qiuyang, ZHOU Chunxia, QIANG Qiang. Water movement and hydrological connections analysis of the subglacial lakes beneath the Totten glacier catchment, East Antarctica based on ICESat altimetry data[J]. Journal of Geomatics, 2017, 42(4): 27-31. [34] 周春霞, 赵秋阳, 墙强. 基于ICESat的南极冰下湖活动监测方法[J]. 武汉大学学报(信息科学版), 2018, 43(10): 1458-1464, 1471. ZHOU Chunxia, ZHAO Qiuyang, QIANG Qiang. Detection of Antarctic subglacial lakes activities using ICESat altimetry data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1458-1464, 1471. [35] SIEGFRIED M R, FRICKER H A, ROBERTS M, et al. A decade of West Antarctic subglacial lake interactions from combined ICESat and CryoSat-2 altimetry[J]. Geophysical Research Letters, 2014, 41(3): 891-898. [36] LYTHE M B, VAUGHAN D G. BEDMAP: a new ice thickness and subglacial topographic model of Antarctica[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B6): 11335-11351. [37] SHREVE R L. Movement of water in glaciers[J]. Journal of Glaciology, 1972, 11(62): 205-214. [38] LIVINGSTONE S J, CLARK C D, WOODWARD J, et al. Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets[J]. The Cryosphere, 2013, 7(6): 1721-1740. [39] SMITH B E, GOURMELEN N, HUTH A, et al. Connected subglacial lake drainage beneath Thwaites glacier, West Antarctica[J]. The Cryosphere, 2017, 11(1): 451-467. [40] 夏誉玲, 李小娟, 王涛. 基于数字高程模型的混合流向算法[J]. 测绘学报, 2018, 47(5): 683-691. DOI: 10.11947/j.AGCS.2018.20170614. XIA Yuling, LI Xiaojuan, WANG Tao. A hybrid flow direction algorithm for water routing on DEMs[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5): 683-691. DOI: 10.11947/j.AGCS.2018.20170614. [41] YANG Yuanxi. Progresses and prospects of marine geodetic datum and marine navigation in China[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1): 16-24 doi:10.11947/j.JGGS.2018.0102. [42] ZHANG Lihua. A line-surface integrated algorithm for underwater terrain matching[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(4): 10-20 doi:10.11947/j.JGGS.2019.0402. |