[1] Navigation Data Standard.Publishing high-accuracy map standard for companies: industrial consortium pushes autonomous driving[EB/OL]. [2016-09-14]. https://www.Nds-association.org/wp-content/uploads/20160914-PR-E.pdf. [2] DUPUIS M, STROBL M, GREZLIKOWSKI H. OpenDRIVE 2010 and beyond-status and future of the de facto standard for the description of road networks[C]//Proceedings of 2010 Driving Simulation Conference Europe. Paris, France: [s.n.], 2010: 231-242. [3] 贺勇, 路昊, 王春香, 等. 基于多传感器的车道级高精细地图制作方法[J]. 长安大学学报(自然科学版), 2015, 35(S1):274-278. HE Yong, LU Hao, WANG Chunxiang, et al. Generation of precise lane-level maps based on multi-sensors[J]. Journal of Chang’an University (Natural Science Edition), 2015, 35(S1):274-278. [4] LIU C, JIANG K, YANG D, et al. Design of a multi-layer lane-level map for vehicle route planning[C]//Proceedings of 2017 MATEC web of conferences. Les Ulis Cedex, France: EDP Sciences, 2017. [5] SHIMADA H, YAMAGUCHI A, TAKADA H, et al. Implementation and evaluation of local dynamic map in safety driving systems[J]. Journal of Transportation Technologies, 2015, 5(2): 102. [6] 刘经南,詹骄,郭迟,等.智能高精地图数据逻辑结构与关键技术[J].测绘学报,2019,48(8):939-953. DOI: 10.11947/j.AGCS.2019.20190125. LIU Jingnan, ZHAN Jiao, GUO Chi, et al. Data logic structure and key technologies on intelligent high-precision map[J]. Act Geodaetica et Cartographica Sinica, 2019,48(8):939-953. DOI: 10.11947/j.AGCS.2019.20190125. [7] 李德仁. 移动测量技术及其应用[J]. 地理空间信息, 2006, 4(4): 1-5. LI Deren. Mobile mapping technology and its applications[J]. Geospatial Information, 2006, 4(4): 1-5. [8] AL-FURHUD M A, AHMED Z H. Genetic algorithms for the multiple travelling salesman problem[J]. International Journal of Advanced Computer Science and Applications (IJACSA), 2020, 11(7): 553-560. [9] CUEVAS A M C, MARTINEZ J A S, SAUCEDO J A M. A two stage method for the multiple traveling salesman problem[J]. International Journal of Applied Metaheuristic Computing (IJAMC), 2020, 11(3): 79-91. [10] 万里鹏, 兰旭光, 张翰博, 等. 深度强化学习理论及其应用综述[J]. 模式识别与人工智能, 2019, 32(1): 67-81. WAN Lipeng, LAN Xuguang, ZHANG Hanbo, et al. A review of deep reinforcement learning theory and application[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(1): 67-81. [11] HU Y, YAO Y, LEE W S. A reinforcement learning approach for optimizing multiple traveling salesman problems over graphs[J]. Knowledge-Based Systems, 2020, 204: 106244. [12] CARION N, USUNIER N, SYNNAEVE G, et al. A structured prediction approach for generalization in cooperative multi-agent reinforcement learning[J]. Advances in neural information processing systems, 2019, 32: 8130-8140. [13] ZANGINA U, BUYAMIN S, AMAN M N, et al. Autonomous mobility of a fleet of vehicles for precision pesticide application[J]. Computers and Electronics in Agriculture, 2021, 186: 106217. [14] LUO Z, POON M, ZHANG Z, et al. The multi-visit traveling salesman problem with multi-drones[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103172. [15] KRAEMER L, BANERJEE B. Multi-agent reinforcement learning as a rehearsal for decentralized planning[J]. Neurocomputing, 2016, 190: 82-94. [16] ALLEN M W, HAHN D, MACFARLAND D C. Heuristics for multiagent reinforcement learning in decentralized decision problems[C]//Proceedings of 2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL). Orlando, FL, USA: IEEE, 2014: 1-8. [17] LIN T, DEBORD M J, ESTABRIDIS K, et al. Decentralized multi-agents by imitation of a centralized controller[C]//Proceedings of 2019 International Conference on Robotics and Automation (ICRA). Montreal, Canada: IEEE, 2019: 7990-7996. [18] KONG X, XIN B, Wang Y, et al. Collaborative deep reinforcement learning for joint object search[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Hawaii, USA: IEEE, 2017: 1695-1704. [19] NGUYEN T T, NGUYEN N D, NAHAVANDI S. Deep reinforcement learning for multiagent systems: a review of challenges, solutions, and applications[J]. IEEE transactions on cybernetics, 2020, 50(9): 3826-3839. [20] BOROSON, ELIZABETH R, NORA A. 3D keypoint repeatability for heterogeneous multi-robot SLAM[C]//Proceedings of 2019 International Conference on Robotics and Automation (ICRA). Montreal, Canada: IEEE, 2019: 6337-6343. [21] CADENA C, CARLONE L, CARRILLO H, et al. Past, present, and future of simultaneous localization and mapping: toward the robust-perception age[J]. IEEE Transactions on robotics, 2016, 32(6): 1309-1332. [22] WANG K, GAO F, SHEN S. Real-time scalable dense surfel mapping[C]//Proceedings of 2019 International Conference on Robotics and Automation (ICRA). Montreal, Canada: IEEE, 2019: 6919-6925. [23] CHEN L, ZHAN W, TIAN W, et al. Deep integration: a multi-label architecture for road scene recognition[J]. IEEE Transactions on Image Processing, 2019, 28(10): 4883-4898. [24] CHEN J, LEI B, SONG Q, et al. A hierarchical graph network for 3D object detection on point clouds[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WDC: IEEE, 2020: 392-401. [25] 陈世增, 李必军, 周继苗. 利用双灭点估计的车道线检测[J]. 测绘通报, 2020(1): 16-20. CHEN Shizeng, LI Bijun, ZHOU Jimiao. Lane detection with double vanishing points estimation[J]. Bulletin of Surveying and Mapping, 2020(1): 16-20. [26] LONG S U N, TAO W U, GUANGCAI S U N, et al. Object detection research of SAR image using improved faster region-based convolutional neural network[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3): 18-28. [27] ZHONG Z, LIN Z Q, BIDART R, et al. Squeeze-and-attention networks for semantic segmentation[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WDC, USA: IEEE, 2020: 13065-13074. [28] ZHOU D, FANG J, SONG X, et al. Joint 3D instance segmentation and object detection for autonomous driving[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WDC, USA: IEEE, 2020: 1839-1849. [29] ZHAO L, MO Q, LIN S, et al. UCTGAN: Diverse image inpainting based on unsupervised cross-space translation[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WDC, USA: IEEE, 2020: 5741-5750. [30] HUANG Z, YU Y, XU J, et al. PF-Net: Point fractal network for 3D point cloud completion[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WDC, USA: IEEE, 2020: 7662-7670. [31] GONG K, GAO Y, LIANG X, et al. Graphonomy: Universal human parsing via graph transfer learning[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. California, USA: IEEE, 2019: 7450-7459. [32] XU H, FANG L, LIANG X, et al. Universal-rcnn: universal object detector via transferable graph r-cnn[C]//Proceedings of 2020 AAAI Conference on Artificial Intelligence. New York, USA: AAAI, 2020, 34(7): 12492-12499. [33] YU W, ZHOU J, YU W, et al. Heterogeneous graph learning for visual commonsense reasoning[J]. Advances in Neural Information Processing Systems, 2019(32): 2769-2779. [34] MCCORMAC J, HANDA A, DAVISON A, et al. Semantic fusion: dense 3D semantic mapping with convolutional neural networks[C]//Proceedings of 2017 IEEE International Conference on Robotics and automation (ICRA). Singapore: IEEE, 2017: 4628-4635. [35] CAMPOS C, ELVIRA R, RODRÍGUEZ J J G, et al. ORB-SLAM3: an accurate open-source library for visual, visual-inertial, and multimap SLAM[J]. IEEE Transactions on Robotics, 2021, 42(9): 1-17. [36] GAO X, WANG R, DEMMEL N, et al. LDSO: direct sparse odometry with loop closure[C]//Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE, 2018: 2198-2204. [37] ATANASOV N, BOWMAN S L, DANIILIDIS K, et al. A unifying view of geometry, semantics, and data association in SLAM[C]//Proceedings of 2018 International Joint Conference on Artificial Intelligence (IJCAI). Stockholm, Sweden: IJCAI, 2018: 5204-5208. [38] ZHANG S Q, ZHANG Q, LIN J. Efficient communication in multi-agent reinforcement learning via variance based control[C]//Proceedings of 2019 International Conference on Neural Information Processing Systems.Vancouver, Canada: MIT, 2019: 3235-3244. [39] LI H, OTA K, DONG M. Learning IoT in edge: deep learning for the internet of things with edge computing[J]. IEEE network, 2018, 32(1): 96-101. |