[1] HE Chenhang, ZENG Hui, HUANG Jianqiang, et al. Structure aware single-stage 3D object detection from point cloud[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA:IEEE, 2020: 11870-11879. [2] ARNOLD E, AL-JARRAH O Y, DIANATI M, et al. A survey on 3D object detection methods for autonomous driving applications[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3782-3795. [3] BOGOSLAVSKYI I, STACHNISS C. Efficient online segmentation for sparse 3D laser scans[J]. PFG-Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2017, 85(1): 41-52. [4] HIMMELSBACH M, HUNDELSHAUSEN F V, WUENSCHE H J. Fast segmentation of 3D point clouds for ground vehicles[C]//Proceedings of 2010 IEEE Intelligent Vehicles Symposium.La Jolla, CA, USA:IEEE, 2010: 560-565. [5] KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An efficient k-means clustering algorithm: analysis and implementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 881-892. [6] 杜芳.基于激光雷达的道路环境感知算法研究与实现[D]. 南京:南京理工大学. 2018. DU Fang. Research and implementation of road environment perception algorithm based on LiDAR. Nanjing: Nanjing University of Science and Technology, 2018. [7] SHI Shaoshuai, WANG Xiaogang, LI Hongsheng. PointRCNN: 3D object proposal generation and detection from point cloud[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA:IEEE, 2019: 770-779. [8] SHI Shaoshuai, WANG Zhe, SHI Jianping, et al. From points to parts: 3D object detection from point cloud with part-aware and part-aggregation network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(8): 2647-2664. [9] SHI Shaoshuai, GUO Chaoxu, JIANG Li, et al. PV-RCNN: point-voxel feature set abstraction for 3D object detection[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA:IEEE, 2020: 10526-10535. [10] WENG Xinshuo, WANG Jianren, HELD D, et al. 3D multi-object tracking: a baseline and new evaluation metrics[C]//Proceedings of 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, NV, USA:IEEE, 2021: 10359-10366. [11] ZHANG W, ZHOU H, SUN S, et al. Robust multi-modality multi-object tracking[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea(South):IEEE/CVF, 2019: 2365-2374. [12] 黄如林. 无人驾驶汽车动态障碍物避撞关键技术研究[D]. 合肥: 中国科学技术大学, 2017. HUANG Rulin. Research on key technologies of dynamic obstacle avoidance for autonomous vehicle[D]. Hefei: University of Science and Technology of China, 2017. [13] BAR-SHALOM Y, DAUM F, HUANG J. The probabilistic data association filter[J]. IEEE Control Systems Magazine, 2009, 29(6): 82-100. [14] LI Xin, WANG Kejun, WANG Wei, et al. A multiple object tracking method using Kalman filter[C]//Proceedings of 2010 IEEE International Conference on Information and Automation. Harbin, China:IEEE, 2010: 1862-1866. [15] YANG Shishan, BAUM M. Extended Kalman filter for extended object tracking[C]//Proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New Orleans, LA, USA:IEEE, 2017: 4386-4390. [16] BREITENSTEIN M D, REICHLIN F, LEIBE B, et al. Robust tracking-by-detection using a detector confidence particle filter[C]//Proceedings of 2009 IEEE 12th International Conference on Computer Vision. Kyoto, Japan:IEEE, 2009: 1515-1522. [17] SU Shenghao, LIU Mengxin, CEN Ming. High definition map assisted vehicle tracking with lane constraint[C]//Proceedings of 2020 Chinese Control and Decision Conference (CCDC). Hefei, China:IEEE, 2020: 3201-3206. [18] ULMKE M, KOCH W. Road-map assisted ground moving target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(4): 1264-1274. [19] HE Hao, WANG Shuyang, WANG Shicheng, et al. A road extraction method for remote sensing image based on encoder-decoder network[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 16-25. [20] LABAYRADE R, DOURET J, LANEURIT J, et al. A reliable and robust lane detection system based on the parallel use of three algorithms for driving safety assistance[J]. IEICE transactions on information and systems, 2006, 89(7): 2092-2100. [21] NEVEN D, BRABANDERE B D, GEORGOULIS S, et al. Towards end-to-end lane detection: an instance segmentation approach[C]//Proceedings of 2018 IEEE Intelligent Vehicles Symposium (IV). Changshu, China:IEEE, 2018: 286-291. [22] KIM Z. Robust lane detection and tracking in challenging scenarios[J]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(1): 16-26. [23] XU Huarong, WANG Xiaodong, HUANG Hongwu, et al. A fast and stable lane detection method based on B-spline curve[C]//Proceedings of 2009 IEEE International Conference on Computer-Aided Industrial Design & Conceptual Design. Wenzhou, China:IEEE, 2009: 1036-1040. [24] 刘经南, 詹骄, 郭迟, 等. 智能高精地图数据逻辑结构与关键技术[J]. 测绘学报, 2019, 48(8): 939-953. DOI:10.11947/j.AGCS.2019.20190125. LIU Jingnan, ZHAN Jiao, GUO Chi, et al. Data logic structure and key technologies on intelligent high-precision map[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8): 939-953. DOI:10.11947/j.AGCS.2019.20190125. [25] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA:IEEE, 2012: 3354-3361. [26] KAMMEL S, PITZER B. Lidar-based lane marker detection and mapping[C]//Proceedings of 2008 IEEE Intelligent Vehicles Symposium. Eindhoven, Netherlands:IEEE, 2008: 1137-1142. [27] JEONG J, KIM A. LiDAR intensity calibration for road marking extraction[C]//Proceedings of 2018 International Conference on Ubiquitous Robots (UR). Honolulu, HI, USA:IEEE, 2018: 455-460. [28] LEVINSON J, THRUN S. Robust vehicle localization in urban environments using probabilistic maps[C]//Proceedings of 2010 IEEE International Conference on Robotics and Automation. AK, USA:IEEE, 2010: 4372-4378. [29] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. [30] ABDI H, WILLIAMS L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(4): 433-459. [31] MIKNIS M, DAVIES R, PLASSMANN P, et al. Near real-time point cloud processing using the PCL[C]//Proceedings of 2015 International Conference on Systems, Signals and Image Processing (IWSSIP). London, UK:IEEE, 2015: 153-156. [32] NGUYEN A, CANO A M, EDAHIRO M, et al. Fast euclidean cluster extraction using GPUs[J]. Journal of Robotics and Mechatronics, 2020, 32(3): 548-560. [33] 丁雷, 基于多Agent的车辆路径规划系统设计与实现[D]. 四川成都. 电子科技大学. 2020. DING Lei. Design and implementation of vehicle path planning system based on multi agent system[D]. Chengdu: University of Electronic Science and Technology of China, 2020. [34] PENTICO D W. Assignment problems: a golden anniversary survey[J]. European Journal of Operational Research, 2007, 176(2): 774-793. [35] CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA:IEEE, 2020: 11618-11628. |