Acta Geodaetica et Cartographica Sinica ›› 2021, Vol. 50 ›› Issue (4): 522-531.doi: 10.11947/j.AGCS.2021.20200230
• Cartography and Geoinformation • Previous Articles Next Articles
LI Jing1, LIU Haiyan1, GUO Wenyue2, CHEN Xin2
Received:
2020-06-11
Revised:
2021-01-15
Published:
2021-04-28
Supported by:
CLC Number:
LI Jing, LIU Haiyan, GUO Wenyue, CHEN Xin. A spatio-temporal network for human activity prediction based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 522-531.
[1] ZHENG Yu. Trajectory data mining:an overview[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2015, 6(3):29. [2] MA Xiaolei, TAO Zhimin, WANG Yinhai, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C:Emerging Technologies, 2015, 54:187-197. [3] WANG Yingzi, ZHOU Xiao, NOULAS A, et al. Predicting the Spatio-temporal evolution of chronic diseases in population with human mobility data[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence.[S.l.]:IJCAI, 2018:3578-3584. [4] 王丽鲲. 基于社交媒体地理数据挖掘的游客时空行为分析[D]. 上海:上海师范大学, 2017. WANG Likun. Spatial temporal behavior analysis of tourists based on social media geographic data mining[D]. Shanghai:Shanghai Normal University, 2017. [5] LIU Yu, LIU Xi, GAO Song, et al. Social sensing:a new approach to understanding our socioeconomic environments[J]. Annals of the Association of American Geographers, 2015, 105(3):512-530. [6] LI Xiaolong, GANG Pan, WU Zhaohui, et al. Prediction of urban human mobility using large-scale taxi traces and its applications[J]. Frontiers of Computer Science, 2012, 6(1):111-121. [7] VLAHOGIANNI E I, GOLIAS J C, KARLAFTIS M G. Short-term traffic forecasting:overview of objectives and methods[J]. Transport Reviews, 2004, 24(5):533-557. [8] OKUTANI I, STEPHANEDES Y J. Dynamic prediction of traffic volume through Kalman filtering theory[J]. Transportation Research Part B:Methodological, 1984, 18(1):1-11. [9] 刘静, 关伟. 交通流预测方法综述[J]. 公路交通科技, 2004, 21(3):82-85. LIU Jing, GUAN Wei. A summary of traffic flow forecasting methods[J]. Journal of Highway and Transportation Research and Development, 2004, 21(3):82-85. [10] DEVEAUD R, ALBAKOUR M D, MACDONALD C, et al. Experiments with a venue-centric model for personalised and time-aware venue suggestion[C]//Proceedings of the 24th ACM International on Conference on Information & Knowledge Management. Melbourne:ACM, 2015. [11] 董春娇, 邵春福, 诸葛承祥, 等. 拥挤流状态下城市快速路交通流时空特性[J]. 北京工业大学学报, 2012, 38(8):1242-1246, 1268. DONG Chunjiao, SHAO Chunfu, ZHUGE Chengxiang, et al. Spatial and temporal characteristics for congested traffic on urban expressway[J]. Journal of Beijing Polytechnic University, 2012, 38(8):1242-1246, 1268. [12] HU Wangsu, YAO Zijun, YANG Sen, et al. Discovering urban travel demands through dynamic zone correlation in location-based social networks[C]//Proceedings of 2018 Joint European Conference on Machine Learning & Knowledge Discovery in Databases. Dublin:Springer, 2018. [13] DENG Dingxiong, SHAHABI C, DEMIRYUREK U, et al. Latent space model for road networks to predict time-varying traffic[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data. California:ACM, 2016. [14] YANN L, YOSHUA B, HINTON G, et al. Deep learning[J]. Nature, 2015, 521(7553):436-444. [15] ZHANG Junbo, ZHENG Yu, QI Dekang. Deep Spatio-temporal residual networks for citywide crowd flows prediction[C]//Proceeding of the 31 AAAI Conference on Artificial Intelligence (AAAI-17). San Francisco:AAAI, 2016. [16] YAO Huaxiu, WU Fei, KE Jintao, et al. Deep multi-view spatial-temporal network for taxi demand prediction[C]//Proceedings of 2018 National Conference on Artificial Intelligence. Honolulu:AAAI, 2018:2588-2595. [17] ZHAO Ling, SONG Yujiao, ZHANG Chao, et al. T-GCN:a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9):3848-3858. [18] YAO Huaxiu, TANG Xianfeng, WEI Hua, et al. Revisiting spatial-temporal similarity:a deep learning framework for traffic prediction[C]//Proceedings of 2019 AAAI Conference on Artificial Intelligence. Palo Alto:AAAI, 2019. [19] BAHDANAU D, CHO K, BENGIO Y, et al. Neural machine translation by jointly learning to align and translate[C]//Proceedings of 2015 Interna-tional Conference on Learning Representations. SanDiego:ICLR, 2015. [20] 刘瑜. 基于空间大数据的社会感知[J]. 中国计算机学会通讯, 2015, 11(11):27-32. LIU Yu. Social computing based on spatial data[J]. Communications of CCF, 2015, 11(11):27-32. [21] 陈超, 齐峰. 卷积神经网络的发展及其在计算机视觉领域中的应用综述[J]. 计算机科学, 2019, 46(3):63-73. CHEN Chao, QI Feng. Review on development of convolutional neural network and its application in computer vision[J]. Computer Science, 2019, 46(3):63-73. [22] MOREIRA-MATIAS L, GAMA J, FERREIRA M, et al. Predicting taxi-passenger demand using streaming data[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3):1393-1402. [23] GOODCHILD M F. Models of scale and scales of modelling[M]//TATE N J, ATKINSON P M. Modelling Scale in Geographical Information Science. New York:John Wiley and Sons, 2001. [24] LUO Weijie, LI Yujia, URTASUN R, et al. Understanding the effective receptive field in deep convolutional neural networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook:ACM, 2016. [25] XIA Chang, ZHANG Anai, WANG Haijun, et al. Modeling urban growth in a metropolitan area based on bidirectional flows, an improved gravitational field model, and partitioned cellular automata[J]. International Journal of Geographical Information Science, 2019, 33(5):877-899. [26] 陆川伟, 孙群, 陈冰, 等. 车辆轨迹数据的道路学习提取法[J]. 测绘学报, 2020, 49(6):692-702. DOI:10.11947/j.AGCS.2020.20190305. LU Chuanwei, SUN Qun, CHEN Bing, et al. Road learning extraction method based on vehicle trajectory data[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6):692-702. DOI:10.11947/j.AGCS.2020.20190305. [27] SCHMIDHUBER J. Deep learning in neural networks:an overview[J]. Neural Networks, 2015, 61:85-117. [28] BENGIO Y, SIMARD P Y, FRASCONI P, et al. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2):157-166. [29] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. [30] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[C]//Proceedings of 2014 Deep Learning and Representation Learning Workshop. Montreal:NIPS, 2014. [31] GAO Song, JANOWICZ K, COUCLELIS H. Extracting urban functional regions from points of interest and human activities on location-based social networks[J]. Transactions in GIS, 2017(21):446-467. [32] 谢志文, 王海军, 张彬, 等. 城市扩展元胞自动机多结构卷积神经网络模型[J]. 测绘学报, 2020, 49(3):375-385. DOI:10.11947/j.AGCS.2020.20190147. XIE Zhiwen, WANG Haijun, ZHANG Bin, et al. Urban expansion cellular automata model based on multi-structures convolutional neural networks[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3):375-385. DOI:10.11947/j.AGCS.2020. 20190147. [33] SMOLA A J, SCHÖLKOPF B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3):199-222. |
[1] | LIU Jingnan, LUO Yarong, GUO Chi, GAO Kefu. PNT intelligence and intelligent PNT [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 811-828. |
[2] | HAN Litao, ZHOU Lijuan, GONG Cheng, ZHANG Aiguo. An indoor navigation network considering walking habits and its generation algorithm [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 729-738. |
[3] | FANG Jinfeng, MENG Xiangfu. POI recommendation based on LBSN and multi-graph fusion [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 739-749. |
[4] | ZHANG Ruizhuo. Risk assessment of power transmission corridors in forestry area based on multi-source data [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 784-784. |
[5] | XIA Jizhe, ZHOU Ying, LI Zhen, LI Fan, YUE Yang, CHENG Tao, LI Qingquan. COVID-19 risk assessment driven by urban spatiotemporal big data: a case study of Guangdong-Hong Kong-Macao Greater Bay Area [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 671-680. |
[6] | ZHU Qing, FENG Bin, LI Maosu, CHEN Meite, XU Zhaowen, XIE Xiao, ZHANG Yeting, LIU Mingwei, HUANG Zhiqin, FENG Yicong. An efficient sparse graph index method for dynamic and associated data [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 681-691. |
[7] | LU Chuanwei, SUN Qun, CHEN Bing, WEN Bowei, ZHAO Yunpeng, XU Li. Road learning extraction method based on vehicle trajectory data [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 692-702. |
[8] | YIN Shuo, YAN Xiaoming, YAN Xiongfeng. Simplification method of building polygon based on feature edges reconstruction [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 703-710. |
[9] | WU Huayi, HUANG Rui, YOU Lan, XIANG Longgang. Recent progress in taxi trajectory data mining [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1341-1356. |
[10] | GUO Qingsheng, LIU Yang, LI Meng, CHENG Xiaoxi, HE Jie, WANG Huihui, WEI Zhiwei. A progressive simplification method of navigation road map based on mesh model [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1357-1368. |
[11] | WU Zheng, WU Pengda, LI Chengming. Adaptive hierarchical spatio-temporal index construction method for vector data under peer-to-peer networks [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1369-1379. |
[12] | WANG Peixiao, ZHANG Hengcai, WANG Haibo, WU Sheng. Spatial-temporal clustering by fast search and find of density peaks [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1380-1390. |
[13] | WAN Zijian, LI Lianying, YANG Min, ZHOU Xiaodong. Decision tree model for extracting road intersection feature from vehicle trajectory data [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1391-1403. |
[14] | HU Guanghui, XIONG Liyang, TANG Guoan. Vector geometry based method for the extraction of slope of aspect by using DEMs [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1404-1414. |
[15] | ZHANG Xu, HAO Xiangyang, LI Jiansheng, LI Pengyue. Fusion and visualization method of dynamic targets in surveillance video with geospatial information [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1415-1423. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||