[1] 魏钟铨. 合成孔径雷达卫星[M]. 北京:科学出版社, 2001:162-167. WEI Zhongquan. Synthetic aperture radar satellite[M]. Beijing:Science Press, 2001:162-167. [2] 陈筠力, 李威. 国外SAR卫星最新进展与趋势展望[J]. 上海航天, 2016, 33(6):1-19. CHEN Junli, LI Wei. Recent advances and trends of SAR satellites in foreign countries[J]. Aerospace Shanghai, 2016, 33(6):1-19. [3] LIU Lin, JIANG Liming, WANG Hansheng. Extraction of glacier surface elevation and velocity in high Asia with ERS-1/2 Tandem SAR data:application to Puruogangri ice field, Tibetan Plateau[C]//Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium. Munich, Germany:IEEE, 2012:4442-4445. [4] 孙亚飞, 江利明, 柳林, 等. TanDEM-X双站InSAR地形提取及精度评估[J]. 武汉大学学报(信息科学版), 2016, 41(1):100-105. SUN Yafei, JIANG Liming, LIU Lin, et al. Generating and evaluating digital terrain model with TanDEM-X bistatic SAR interferometry[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1):100-105. [5] 余博, 李如仁, 陈振炜, 等. 基于高分三号数据的干涉测量研究[J]. 测绘工程, 2019, 28(4):19-23, 28. YU Bo, LI Ruren, CHEN Zhenwei, et al. Experimental research on interferometry based on GF-3 SAR data[J]. Engineering of Surveying and Mapping, 2019, 28(4):19-23, 28. [6] LU H, SUO Z, LI Z, et al. InSAR baseline estimation for Gaofen-3 real-time DEM generation[J]. Sensors (Basel, Switzerland), 2018, 18(7):E2152. [7] 楼良盛, 刘志铭, 张昊, 等. 天绘二号卫星工程设计与实现[J]. 测绘学报, 2020, 49(10):1252-1264.DOI:10.11947/j.AGCS.2020.20200175. LOU Liangsheng, LIU Zhiming, ZHANG Hao, et al. TH-2 satellite engineering design and implementation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10):1252-1264.DOI:10.11947/j.AGCS.2020.20200175. [8] KRIEGER G, MOREIRA A, FIEDLER H, et al. TanDEM-X:a satellite formation for high-resolution SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11):3317-3341. [9] MARTONE M, BRÄUTIGAM B, RIZZOLI P, et al. Coherence evaluation of TanDEM-X interferometric data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73:21-29. [10] YARMAN C E, YAZICI B, CHENEY M. Bistatic synthetic aperture radar imaging for arbitrary flight trajectories[J]. IEEE Transactions on Image Processing, 2008, 17(1):84-93. [11] BAMLER R, BOERNER E. On the use of numerically computed transfer functions for processing of data from bistatic SARs and high squint orbital SARs[C]//Proceedings of 2005 IEEE International Geoscience and Remote Sensing Symposium(IGARSS).Seoul, Korea:IEEE,2005:1051-1055. [12] BAMLER R, MEYER F, LIEBHART W. Processing of bistatic SAR data from quasi-stationary configurations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11):3350-3358. [13] QIU Xiaolan, HU Donghui, DING Chibiao. Focusing bistaitc images use RDA based on hyperbolic approximating[C]//Proceedings of 2006 CIE International Conference on Radar. Shanghai, China:IEEE,2006:1-4. [14] LOFFELD O, NIES H, PETERS V, et al. Models and useful relations for bistatic SAR processing[C]//Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium(IGARSS). Toulouse, France:IEEE,2003:1442-1445. [15] NATROSHVILI K, LOFFELD O, NIES H, et al. Focusing of general bistatic SAR configuration data with 2D inverse scaled FFT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10):2718-2727. [16] WANG R, LOFFELD O, NIES H, et al. Chirp-scaling algorithm for bistatic SAR data in the constant-offset configuration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3):952-964. [17] NEO Y L, WONG F, CUMMING I G. A two-dimensional spectrum for bistatic SAR processing using series reversion[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1):93-96. [18] FERRAIUOLO G, MEGLIO F, PASCAZIO V, et al. DEM reconstruction accuracy in multichannel SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1):191-201. [19] 张勤, 黄观文, 杨成生. 地质灾害监测预警中的精密空间对地观测技术[J]. 测绘学报, 2017, 46(10):1300-1307.DOI:10.11947/j.AGCS.2017.20170453. ZHANG Qin, HUANG Guanwen, YANG Chengsheng. Precision space observation technique for geological hazard monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1300-1307.DOI:10.11947/j.AGCS.2017.20170453. [20] 张登荣, 俞乐. 一种高精度的干涉雷达复数影像配准方法[J]. 遥感学报, 2007, 11(4):563-567. ZHANG Dengrong, YU Le. A high-precision co-registration method for InSAR image processing[J]. Journal of Remote Sensing, 2007, 11(4):563-567. [21] ABDELFATTAH R, NICOLAS J M. InSAR image co-registration using the Fourier-Mellin transform[J]. International Journal of Remote Sensing, 2005, 26(13):2865-2876. [22] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10):1717-1733.DOI:10.11947/j.AGCS.2017.20170350. ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733.DOI:10.11947/j.AGCS.2017.20170350. [23] TROUVÉ E, CARAMMA M, MAÎTRE H. Fringe detection in noisy complex interferograms[J]. Applied Optics, 1996, 35(20):3799-3806. [24] SHANKER A P, ZEBKER H. Edgelist phase unwrapping algorithm for time series InSAR analysis[J]. Journal of the Optical Society of America A, 2010, 27(3):605-612. [25] 孙造宇, 梁甸农, 张永胜. 星载InSAR系统DEM重建及其误差分析[J]. 电子与信息学报, 2008, 30(6):1336-1340. SUN Zaoyu, LIANG Diannong, ZHANG Yongsheng. Method and error analysis of DEM reconstruction for spaceborne InSAR[J]. Journal of Electronics & Information Technology, 2008, 30(6):1336-1340. [26] LIAO Mingsheng, WANG Teng, LU Lijun, et al. Reconstruction of DEMs from ERS-1/2 tandem data in mountainous area facilitated by SRTM data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(7):2325-2335. [27] TANG Xinming, LI Tao, GAO Xiaoming, et al. Research on key technologies of precise InSAR surveying and mapping applications using automatic SAR imaging[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2):27-37. [28] ZHAO Hongli, FAN Jinghui, GUO Xiaofang. A method for InSAR baseline refinement and its application[C]//Proceedings of 2010 IITA International Conference on Geoscience and Remote Sensing. Qingdao, China:2010,IEEE:161-164. [29] 徐华平, 朱玲凤, 刘向华, 等. 一种基于干涉条纹频率的星载InSAR基线估计新方法[J]. 电子学报, 2011, 39(9):2212-2217. XU Huaping, ZHU Lingfeng, LIU Xianghua, et al. A novel baseline estimation approach of spaceborne InSAR based on interferometric fringe frequency[J]. Acta Electronica Sinica, 2011, 39(9):2212-2217. [30] 朱建军, 杨泽发, 李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报, 2019, 48(2):135-144.DOI:10.11947/j.AGCS.2019.20180188. ZHU Jianjun, YANG Zefa, LI Zhiwei. Recent progress in retrieving and predicting mining-induced 3D displace-ments using InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2):135-144.DOI:10.11947/j.AGCS.2019.20180188. [31] 刘艳阳, 李真芳, 杨娟娟, 等. 分布式卫星InSAR目标定位近似闭式解[J]. 西安电子科技大学学报, 2012, 39(4):87-93. LIU Yanyang, LI Zhenfang, YANG Juanjuan, et al. Quasi-closed-form solution for distributed satellites InSAR geolocation[J]. Journal of Xidian University, 2012, 39(4):87-93. |