[1] 武芳, 巩现勇, 杜佳威. 地图制图综合回顾与前望[J]. 测绘学报, 2017, 46(10):1645-1664. DOI:10.11947/j.AGCS.2017.20170287. WU Fang, GONG Xianyong, DU Jiawei. Overview of the research progress in automated map generalization[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1645-1664. DOI:10.11947/j.AGCS.2017.20170287. [2] PARTOVI T, BAHMANYAR R, KRAUß T, et al. Building outline extraction using a heuristic approach based on generalization of line segments[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(3):933-947. [3] BUCHIN K, MEULEMANS W, RENSSEN A V, et al. Area-preserving simplification and schematization of polygonal subdivisions[J]. ACM Transactions on Spatial Algorithms and Systems, 2016, 2(1):1-36. [4] REGNAULD N, EDWARDS A, BARRAULT M. Strategies in building generalization:modelling the sequence, constraining the choice[C]//Processing of the 19th ICC Workshop on Progress and Developments in Automated Map Generalization, Ottawa. ICC,1999. [5] 尹烁, 闫小明, 晏雄锋. 基于特征边重构的建筑物化简方法[J]. 测绘学报, 2020, 49(6):703-710. YIN Shuo, YAN Xiaoming, YAN Xiongfeng. Simplification method of building polygon based on feature edges reconstruction[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6):703-710. [6] 高晓蓉, 闫浩文, 禄小敏, 等. 利用"计算区"进行建筑物短边结构识别与渐进式化简[J]. 武汉大学学报(信息科学版), 2021. 武汉大学学报(信息科学版), 2021, 46(11):1782-1790. GAO Xiaorong, YAN Haowen, LU Xiaomin, et al. Short-edge structure recognition and progressive simplification for buildings using "calculation regions"[J]. Geomatics and Information Science of Wuhan University, 2021. 46(11):1782-1790. [7] 陈文瀚, 龙毅, 沈婕, 等. 利用约束D-TIN进行建筑物多边形凹部结构识别与渐进式化简[J]. 武汉大学学报(信息科学版), 2011, 36(5):584-587, 592. CHEN Wenhan, LONG Yi, SHEN Jie, et al. Structure recognition and progressive simplification of the concaves of building polygon based on constrained D-TIN[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5):584-587, 592. [8] 许文帅, 龙毅, 周侗, 等. 基于邻近四点法的建筑物多边形化简[J]. 测绘学报, 2013, 42(6):929-936. XU Wenshuai, LONG Yi, ZHOU Tong, et al. Simplification of building polygon based on adjacent four-point method[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(6):929-936. [9] SESTER M. Generalization based on least squares adjustment[J]. International Archives of Photogrammetry and Remote Sensing, XXXIII (B4), 2000:931-938. [10] SESTER M. Optimization approaches for generalization and data abstraction[J]. International Journal of Geographical Information Science, 2005, 19(8/9):871-897. [11] 刘鹏程, 艾廷华, 邓吉芳. 基于最小二乘的建筑物多边形的化简与直角化[J]. 中国矿业大学学报, 2008, 37(5):699-704. LIU Pengcheng, AI Tinghua, DENG Jifang. Simplification and rectangularity of building-polygon based on least squares adjustment[J]. Journal of China University of Mining & Technology, 2008, 37(5):699-704. [12] HAUNERT J H, WOLFF A. Optimal and topologically safe simplification of building footprints[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems-GIS'10. November 2-5, 2010. San Jose, California. New York:ACM Press, 2010:192-201. [13] BAYER T. Automated Building Simplification Using a Recursive ApproachCartography in Central and Eastern Europe, Berlin:Springer,2019.192-201. [14] 晏雄锋, 艾廷华, 杨敏. 居民地要素化简的形状识别与模板匹配方法[J]. 测绘学报, 2016, 45(7):874-882.. DOI:10.11947/j.AGCS.2016.20150162. YAN Xiongfeng, Al Tinghua, Yang Min. A simplification of residential feature by the shape cognition and template matching method[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(7):874-882. DOI:10.11947/j.AGCS.2016.20150162. [15] YAN Xiongfeng, AI Tinghua, ZHANG Xiang. Template matching and simplification method for building features based on shape cognition[J]. ISPRS International Journal of Geo-Information, 2017, 6(8):250. [16] DAMEN J, KREVELD M, SPAAN B. High quality building generalization by extending the morphological operators[C]//Proceedings of the 11th ICA Workshop on Generalisation and Multiple Representation. Montpellier, France. 2008. [17] 王辉连, 武芳, 张琳琳, 等. 数学形态学和模式识别在建筑物多边形化简中的应用[J]. 测绘学报, 2005, 34(3):269-276. WANG Huilian, WU Fang, ZHANG Linlin, et al. The application of mathematical morphology and pattern recognition to building polygon simplification[J]. Acta Geodaetica et Cartographic Sinica, 2005, 34(3):269-276. [18] CHENG Boyan, LIU Qiang, LI Xiaowen, et al. Building simplification using backpropagation neural networks:a combination of cartographers' expertise and raster-based local perception[J]. GIScience & Remote Sensing, 2013, 50(5):527-542. [19] FENG Yu, THIEMANN F, SESTER M. Learning cartographic building generalization with deep convolutional neural networks[J]. ISPRS International Journal of Geo-Information, 2019, 8(6):258. [20] SAMSONOV T E, YAKIMOVA O P. Shape-adaptive geometric simplification of heterogeneous linedatasets[J]. International Journal of Geographical Information Science, 2017, 31(8):1485-1520. [21] WANG Zeshen, LEE Dan. Building simplification based on pattern recognition and shape analysis[C]//Proceedings of the 9th International Symposium on Spatial Data Handling, Beijing, Beijing, Springer,2000:58-72. [22] YANG Min, YUAN Tuo, YAN Xiongfeng, et al. A hybrid approach to building simplification with an evaluator from a backpropagation neural network[J]. International Journal of Geographical Information Science, 2021:1-30. [23] YAN Xiongfeng, AI Tinghua, YANG Min, et al. Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps[J]. International Journal of Geographical Information Science, 2021, 35(3):490-512. [24] RONNEBERGER O, FISCHER P, BROX T. U-net:convolutional networks for biomedical image segmentation[C]//Proceedings of Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015, Munich:MICCAI, 2015. [25] YAN Xiongfeng, AI Tinghua, YANG Min, et al. A graph convolutional neural network for classification of building patterns using spatial vector data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150:259-273. [26] YING R, YOU Jiaxuan, MORRIS C, et al. Hierarchical graph representation learning with differentiable pooling[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, California, USA:NIPS,2018:4805-4815. [27] ARKIN E M, CHEW L P, HUTTENLOCHER D P, et al. An efficiently computable metric for comparing polygonalshapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(3):209-216. [28] LAURENS V D M, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9:2579-2605. |