[1] DOWMAN I, REUTER H I. Global geospatial data from earth observation:status and issues[J]. International Journal of Digital Earth, 2017, 10(4):328-341. [2] 宫鹏.遥感科学与技术中的一些前沿问题[J].遥感学报, 2009, 13(1):13-23. GONG Peng. Some frontier problems in remote sensing science and technology[J]. Journal of Remote Sensing, 2009, 13(1):13-23. [3] 龚健雅,钟燕飞.光学遥感影像智能化处理研究进展[J].遥感学报, 2016, 20(5):733-747. GONG Jianya, ZHONG Yanfei. Survey of intelligent optical remote sensing image processing[J]. Journal of Remote Sensing, 2016, 20(5):733-747. [4] 李德仁,童庆禧,李荣兴,等.高分辨率对地观测的若干前沿科学问题[J].中国科学:地球科学, 2012, 42(6):805-813. LI Deren, TONG Qingxi, LI Rongxing, et al. Some frontier scientific problems of high-resolution earth observation[J]. Scientia Sinica (Terrae), 2012, 42(6):805-813. [5] 童庆禧,张兵,张立福.中国高光谱遥感的前沿进展[J].遥感学报, 2016, 20(5):689-707. TONG Qingxi, ZHANG Bing, ZHANG Lifu. Current progress of hyperspectral remote sensing in China[J]. Journal of Remote Sensing, 2016, 20(5):689-707. [6] WOODCOCK C E, LOVELAND T R, HEROLD M, et al. Transitioning from change detection to monitoring with remote sensing:a paradigm shift[J]. Remote Sensing of Environment, 2020, 238:111558. [7] CHEN Bin, HUANG Bo, XU Bing. Comparison of spatiotemporal fusion models:a review[J]. Remote Sensing, 2015, 7(2):1798-1835. [8] 黄波,赵涌泉.多源卫星遥感影像时空融合研究的现状及展望[J].测绘学报, 2017, 46(10):1492-1499. DOI:10.11947/j.AGCS.2017. 20170376. HUANG Bo, ZHAO Yongquan. Research status and prospect of spatiotemporal fusion of multi-source satellite remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1492-1499. DOI:10.11947/j.AGCS.2017. 20170376. [9] 刘建波,马勇,武易天,等.遥感高时空融合方法的研究进展及应用现状[J].遥感学报, 2016, 20(5):1038-1049. LIU Jianbo, MA Yong, WU Yitian, et al. Review of methods and applications of high spatiotemporal fusion of remote sensing data[J]. Journal of Remote Sensing, 2016, 20(5):1038-1049. [10] BELGIU M, STEIN A. Spatiotemporal image fusion in remote sensing[J]. Remote Sensing, 2019, 11(7):818. [11] ZHANG H K, HUANG B, ZHANG M, et al. A generalization of spatial and temporal fusion methods for remotely sensed surface parameters[J]. International Journal of Remote Sensing, 2015, 36(17):4411-4445. [12] ZHU Xiaolin, CAI Fangyi, TIAN Jiaqi, et al. Spatiotemporal fusion of multisource remote sensing data:literature survey, taxonomy, principles, applications, and future directions[J]. Remote Sensing, 2018, 10(4):527. [13] 张良培,何江,杨倩倩,等.数据驱动的多源遥感信息融合研究进展[J].测绘学报, 2022, 51(7):1317-1337. DOI:10.11947/j.AGCS.2022. 20220171. ZHANG Liangpei, HE Jiang, YANG Qianqian, et al. Data-driven multi-source remote sensing data fusion:progress and challenges[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1317-1337. DOI:10.11947/j.AGCS.2022. 20220171. [14] ZHAO Yi, JIANG Mi, MA Zhangfeng. Integration of SAR polarimetric features and multi-spectral data for object-based land cover classification[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(4):64-72. [15] ZHUKOV B, OERTEL D, LANZL F, et al. Unmixing-based multisensor multiresolution image fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3):1212-1226. [16] LIU Wenjie, ZENG Yongnian, LI Songnian, et al. Spectral unmixing based spatiotemporal downscaling fusion approach[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 88:102054. [17] CAI Jiajun, HUANG Bo, FUNG T. Progressive spatiotemporal image fusion with deep neural networks[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 108:102745. [18] GAO Feng, MASEK J, SCHWALLER M, et al. On the blending of the Landsat and MODIS surface reflectance:predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8):2207-2218. [19] GAO Feng, ANDERSON M C, KUSTAS W P, et al. Simple method for retrieving leaf area index from Landsat using MODIS leaf area index products as reference[J]. Journal of Applied Remote Sensing, 2012, 6(1):063554. [20] HILKER T, WULDER M A, COOPS N C, et al. Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model[J]. Remote Sensing of Environment, 2009, 113(9):1988-1999. [21] 柳文杰,曾永年,张猛.融合时间序列环境卫星数据与物候特征的水稻种植区提取[J].遥感学报, 2018, 22(3):381-391. LIU Wenjie, ZENG Yongnian, ZHANG Meng. Mapping rice paddy distribution by using time series HJ blend data and phenological parameters[J]. Journal of Remote Sensing, 2018, 22(3):381-391. [22] WATTS J D, POWELL S L, LAWRENCE R L, et al. Improved classification of conservation tillage adoption using high temporal and synthetic satellite imagery[J]. Remote Sensing of Environment, 2011, 115(1):66-75. [23] WENG Qihao, FU Peng, GAO Feng. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data[J]. Remote Sensing of Environment, 2014, 145:55-67. [24] ZHANG Hankui, CHEN J M, HUANG Bo, et al. Reconstructing seasonal variation of landsat vegetation index related to leaf area index by fusing with MODIS data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(3):950-960. [25] 张猛,曾永年.融合高时空分辨率数据估算植被净初级生产力[J].遥感学报, 2018, 22(1):143-152. ZHANG Meng, ZENG Yongnian. Net primary production estimation by using fusion remote sensing data with high spatial and temporal resolution[J]. Journal of Remote Sensing, 2018, 22(1):143-152. [26] ZHANG Meng, ZENG Yongnian, HUANG Wei, et al. Combining spatiotemporal fusion and object-based image analysis for improving wetland mapping in complex and heterogeneous urban landscapes[J]. Geocarto International, 2019, 34(10):1144-1161. [27] 皮新宇,曾永年,贺城墙.融合多源遥感数据的高分辨率城市植被覆盖度估算[J].遥感学报, 2021, 25(6):1216-1226. PI Xinyu, ZENG Yongnian, HE Chengqiang. High-resolution urban vegetation coverage estimation based on multi-source remote sensing data fusion[J]. National Remote Sensing Bulletin, 2021, 25(6):1216-1226. [28] HILKER T, WULDER M A, COOPS N C, et al. A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS[J]. Remote Sensing of Environment, 2009, 113(8):1613-1627. [29] GEVAERT C M, GARCÍA-HARO F J. A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion[J]. Remote Sensing of Environment, 2015, 156:34-44. [30] ROY D P, JU Junchang, LEWIS P, et al. Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data[J]. Remote Sensing of Environment, 2008, 112(6):3112-3130. [31] ZHU Xiaolin, CHEN Jin, GAO Feng, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote Sensing of Environment, 2010, 114(11):2610-2623. [32] ZHU Xiaolin, HELMER E H, GAO Feng, et al. A flexible spatiotemporal method for fusing satellite images with different resolutions[J]. Remote Sensing of Environment, 2016, 172:165-177. [33] LIU Wenjie, ZENG Yongnian, LI Songnian, et al. An improved spatiotemporal fusion approach based on multiple endmember spectral mixture analysis[J]. Sensors, 2019, 19(11):2443. [34] GUO Dizhou, SHI Wenzhong, HAO Ming, et al. FSDAF 2. 0:improving the performance of retrieving land cover changes and preserving spatial details[J]. Remote Sensing of Environment, 2020, 248:111973. [35] 黄波,姜晓璐.增强型空间像元分解时空遥感影像融合算法[J].遥感学报, 2021, 25(1):241-250. HUANG Bo, JIANG Xiaolu. An enhanced unmixing model for spatiotemporal image fusion[J]. National Remote Sensing Bulletin, 2021, 25(1):241-250. [36] LI Xiaodong, FOODY G M, BOYD D S, et al. SFSDAF:an enhanced FSDAF that incorporates sub-pixel class fraction change information for spatio-temporal image fusion[J]. Remote Sensing of Environment, 2020, 237:111537. [37] HOU Shuwei, SUN Wenfang, GUO Baolong, et al. Adaptive-SFSDAF for spatiotemporal image fusion that selectively uses class abundance change information[J]. Remote Sensing, 2020, 12(23):3979 |