[1] |
ZHANG Guoqing, YAO Tandong, XIE Hongjie, et al. Response of Tibetan Plateau lakes to climate change: trends, patterns, and mechanisms[J]. Earth-Science Reviews, 2020, 208: 103269.
|
[2] |
MESSAGER M L, LEHNER B, GRILL G, et al. Estimating the volume and age of water stored in global lakes using a geo-statistical approach[J]. Nature Communications, 2016, 7: 13603.
|
[3] |
YAO Tandong, BOLCH T, CHEN Deliang, et al. The imbalance of the Asian water tower[J]. Nature Reviews Earth & Environment, 2022, 3: 618-632.
|
[4] |
ZHANG Guoqing, YAO Tandong, PIAO Shilong, et al. Extensive and drastically different alpine lake changes on Asia 's high plateaus during the past four decades[J]. Geophysical Research Letters, 2017, 44(1): 252-260.
|
[5] |
YAO Fangfang, LIVNEH B, RAJAGOPALAN B, et al. Satellites reveal widespread decline in global lake water storage[J]. Science, 2023, 380(6646): 743-749.
|
[6] |
ZHANG Guoqing. Water level variation of Lake Qinghai from satellite and in situ measurements under climate change[J]. Journal of Applied Remote Sensing, 2011, 5(1): 053532.
|
[7] |
LEI Yanbin, YANG Kun, WANG Bin, et al. Response of inland lake dynamics over the Tibetan Plateau to climate change[J]. Climatic Change, 2014, 125(2): 281-290.
|
[8] |
CRÉTAUX J F, ARSEN A, CALMANT S, et al. SOLS: a lake database to monitor in the near real time water level and storage variations from remote sensing data[J]. Advances in Space Research, 2011, 47(9): 1497-1507.
|
[9] |
SONG Chunqiao, HUANG Bo, KE Linghong. Inter-annual changes of alpine inland lake water storage on the Tibetan Plateau: detection and analysis by integrating satellite altimetry and optical imagery[J]. Hydrological Processes, 2014, 28(4): 2411-2418.
|
[10] |
XU Fenglin, ZHANG Guoqing, YI Shuang, et al. Seasonal trends and cycles of lake-level variations over the Tibetan Plateau using multi-sensor altimetry data[J]. Journal of Hydrology, 2022, 604: 127251.
|
[11] |
ZHANG Guoqing, LUO Wei, CHEN Wenfeng, et al. A robust but variable lake expansion on the Tibetan Plateau[J]. Science Bulletin, 2019, 64(18): 1306-1309.
|
[12] |
YUAN Cui, GONG Peng, ZHANG Han, et al. Monitoring water level changes from retracked Jason-2 altimetry data: a case study in the Yangtze River, China[J]. Remote Sensing Letters, 2017, 8(5): 399-408.
|
[13] |
CHEN J, LIAO J, LOU Y, et al. High-resolution datasets for lake level changes in the Qinghai-Tibetan Plateau from 2002 to 2021 using multi-altimeter data[J]. Earth System Science Data Discuss, 2022: 1-18.
|
[14] |
DESAI S, FU L, CHERCHALI S, et al. Surface water and ocean topography mission (SWOT) project science requirements document, Rev B[R]. [S.l.]: California Institute of Technology, 2018.
|
[15] |
XIONG Jinghua, JIANG Liguang, QIU Yuanlin, et al. On the capabilities of the SWOT satellite to monitor the lake level change over the Third Pole[J]. Environmental Research Letters, 2023, 18(4): 044008.
|
[16] |
PITCHER L H, PAVELSKY T M, SMITH L C, et al. AirSWOT InSAR mapping of surface water elevations and hydraulic gradients across the Yukon flats basin, Alaska[J]. Water Resources Research, 2019, 55(2): 937-953.
|
[17] |
FERNANDEZ D, FU L, POLLARD B, et al. SWOT project mission performance and error budget, Rev A[R]. [S.l.]: California Institute of Technology, 2017.
|
[18] |
BIANCAMARIA S, LETTENMAIER D P, PAVELSKY T M. The SWOT mission and its capabilities for land hydrology[J]. Surveys in Geophysics, 2016, 37(2): 307-337.
|
[19] |
FJ∅RTOFT R, GAUDIN J M, POURTHIÉ N, et al. KaRIn on SWOT: characteristics of near-nadir Ka-band interferometric SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4): 2172-2185.
|
[20] |
DURAND M, CHEN C, DE MORAES FRASSON R P, et al. How will radar layover impact SWOT measurements of water surface elevation and slope, and estimates of river discharge?[J]. Remote Sensing of Environment, 2020, 247: 111883.
|
[21] |
SHENG Yongwei, SONG Chunqiao, WANG Jida, et al. Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery[J]. Remote Sensing of Environment, 2016, 185: 129-141.
|
[22] |
ZHANG Guoqing, YAO Tandong, XIE Hongjie, et al. Increased mass over the Tibetan Plateau: from lakes or glaciers?[J]. Geophysical Research Letters, 2013, 40(10): 2125-2130.
|
[23] |
类延斌. 青藏高原湖泊水位观测(2010—2017) [DB]. 北京: 国家青藏高原科学数据中心, 2018.
|
|
LEI Yanbin. The water level observation of lakes on the Tibetan Plateau[DB]. Beijing: National Tibetan Plateau Data Center, 2018.
|
[24] |
类延斌. 青藏高原西部湖泊水位数据(2016—2021) [DB]. 北京: 国家青藏高原科学数据中心, 2022.
|
|
LEI Yanbin. In-situ observations of lake level on the western Tibetan Plateau[DB]. Beijing: National Tibetan Plateau Data Center, 2022.
|
[25] |
张国庆. 青海湖水文气象数据(1956—2020) [DB]. 北京: 国家青藏高原科学数据中心, 2021.
|
|
ZHANG Guoqing. Qinghai Lake hydrology and climate data[DB]. Beijing: National Tibetan Plateau Data Center, 2021.
|
[26] |
张国庆. 青藏高原大于1平方公里湖泊数据集(v3.1)(1970s—2022) [DB]. 北京: 国家青藏高原科学数据中心, 2019.
|
|
ZHANG Guoqing. The lakes larger than 1 km2 in Tibetan Plateau (v3.1) (1970s—2022) [DB]. Beijing: National Tibetan Plateau Data Center, 2019.
|