[1] 陈锐志, 陈亮. 基于智能手机的室内定位技术的发展现状和挑战[J]. 测绘学报, 2017, 46(10):1316-1326. DOI:10.11947/j.AGCS.2017.20170383. CHEN Ruizhi, CHEN Liang. Indoor positioning with smartphones:the state-of-the-art and the challenges[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1316-1326. DOI:10.11947/j.AGCS.2017.20170383. [2] 周宝定, 李清泉, 毛庆洲, 等. 用户行为感知辅助的室内行人定位[J]. 武汉大学学报(信息科学版), 2014, 39(6):719-723. ZHOU Baoding, LI Qingquan, MAO Qingzhou, et al. User activity awareness assisted indoor pedestrian localization[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6):719-723. [3] GU Fuqiang, HU Xuke, RAMEZANI M, et al. Indoor localization improved by spatial context-a survey[J]. ACM Computing Surveys, 2019, 52(3):Article No. 64. [4] DAVIDSON P, PICHE R. A survey of selected indoor positioning methods for smartphones[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2):1347-1370. [5] LANE N D, MILUZZO E, LU H, et al. A survey of mobile phone sensing[J]. IEEE Communications Magazine, 2010, 48(9):140-150. [6] 周成虎. 全空间地理信息系统展望[J]. 地理科学进展, 2015, 34(2):129-131. ZHOU Chenghu. Prospects on pan-spatial information system[J]. Progress in Geography, 2015, 34(2):129-131. [7] 朱欣焰, 周成虎, 呙维, 等. 全息位置地图概念内涵及其关键技术初探[J]. 武汉大学学报(信息科学版), 2015, 40(3):285-295. Zhu Xinyan, Zhou Chenghu, Guo Wei, et al. Preliminary study on conception and key technologies of the location-based pan-information map[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3):285-295. [8] 朱庆, 熊庆, 赵君峤. 室内位置信息模型与智能位置服务[J]. 测绘地理信息, 2014, 39(5):1-7. ZHU Qing, XIONG Qing, ZHAO Junqiao. Indoor location information model and intelligent location service[J]. Journal of Geomatics, 2014, 39(5):1-7. [9] ZHOU Baoding, LI Qingquan, MAO Qingzhou, et al. Activity sequence-based indoor pedestrian localization using smartphones[J]. IEEE Transactions on Human-Machine Systems, 2015, 45(5):562-574. [10] ABDULRAHIM K, HIDE C, MOORE T, et al. Using constraints for shoe mounted indoor pedestrian navigation[J]. The Journal of Navigation, 2012, 65(1):15-28. [11] NOH Y, YAMAGUCHI H, LEE U. Infrastructure-free collaborative indoor positioning scheme for time-critical team operations[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2018, 48(3):418-432. [12] HIGHTOWER J, BORRIELLO G. Particle filters for location estimation in ubiquitous computing:a case study[C]//Proceedings of the International Conference on Ubiquitous Computing. Berlin, Heidelberg:Springer, 2004:88-106. [13] BEAUREGARD S, WIDYAWAN, KLEPAL M. Indoor PDR performance enhancement using minimal map information and particle filters[C]//Proceedings of 2008 IEEE/ION Position, Location and Navigation Symposium. Monterey, CA, USA:IEEE, 2008:141-147. [14] LI Fan, ZHAO Chunshui, DING Guanzhong, et al. A reliable and accurate indoor localization method using phone inertial sensors[C]//Proceedings of 2012 ACM Conference on Ubiquitous Computing. Pittsburgh, Pennsylvania:ACM, 2012:421-430. [15] RAI A, CHINTALAPUDI K K, PADMANABHAN V N, et al. Zee:zero-effort crowdsourcing for indoor localization[C]//Proceedings of the 18th Annual International Conference on Mobile Computing and Networking. Istanbul, Turkey:ACM, 2012:293-304. [16] ASCHER C, KESSLER C, WEIS R, et al. Multi-floor map matching in indoor environments for mobile platforms[C]//Proceedings of 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN). Sydney, NSW, Australia:IEEE, 2012:1-8. [17] XIAO Zhouling, WEN Hongkai, MARKHAM A, et al. Robust indoor positioning with lifelong learning[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(11):2287-2301. [18] GILLIÉRON PY, BVCHEL D, SPASSOV I, et al. Indoor navigation performance analysis[C]//Proceedings of the 8th European Navigation Conference GNSS.The Netherlands:GNSS,2004. [19] HILSENBECK S, BOBKOV D, SCHROTH G, et al. Graph-based data fusion of pedometer and WiFi measurements for mobile indoor positioning[C]//Proceedings of 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing. Seattle, Washington:ACM, 2014:147-158. [20] ZHOU Baoding, LI Qingquan, MAO Qingzhou, et al. ALIMC:activity landmark-based indoor mapping via crowdsourcing[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5):2774-2785. [21] XIAO Zhouling, WEN Hongkai, MARKHAM A, et al. Lightweight map matching for indoor localisation using conditional random fields[C]//Proceedings of the 13th International Symposium on Information Processing in Sensor Networks. Berlin, Germany:IEEE, 2014:131-142. [22] AZIZYAN M, CONSTANDACHE I, ROY CHOUDHURY R. SurroundSense:mobile phone localization via ambience fingerprinting[C]//Proceedings of the 15th Annual International Conference on Mobile Computing and Networking. Beijing, China:ACM, 2009:261-272. [23] WANG He, SEN S, MARIAKAKIS A, et al. No need to war-drive:unsupervised indoor localization[C]//Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services. Low Wood Bay, Lake District, UK:ACM,2012:197-210. [24] GUSENBAUER D, ISERT C, KRÖSCHE J. Self-contained indoor positioning on off-the-shelf mobile devices[C]//Proceedings of 2010 International Conference on Indoor Positioning and Indoor Navigation. Zurich, Switzerland:IEEE, 2010:1-9. [25] PARK K, SHIN H, CHA H. Smartphone-based pedestrian tracking in indoor corridor environments[J]. Personal and Ubiquitous Computing, 2013, 17(2):359-370. [26] KHALIFA S, HASSAN M. Evaluating mismatch probability of activity-based map matching in indoor positioning[C]//Proceedings of 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN). Sydney, NSW, Australia:IEEE, 2012:1-9. [27] HASSAN M. A performance model of pedestrian dead reckoning with activity-based location updates[C]//Proceedings of the 18th IEEE International Conference on Networks (ICON). Singapore:IEEE, 2012:64-69. [28] HARDEGGER M, ROGGEN D, MAZILU S, et al. ActionSLAM:using location-related actions as landmarks in pedestrian SLAM[C]//Proceedings of 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN). Sydney, NSW, Australia:IEEE, 2012:1-10. [29] GRZONKA S, KARWATH A, DIJOUX F, et al. Activity-based estimation of human trajectories[J]. IEEE Transactions on Robotics, 2012, 28(1):234-245. [30] HARDEGGER M, MAZILU S, CARACI D, et al. Action SLAM on a smartphone:at-home tracking with a fully wearable system[C]//Proceedings of the International Conference on Indoor Positioning and Indoor Navigation. Montbeliard-Belfort, France:IEEE, 2013:1-8. [31] ZEMENE E, TESFAYE Y T, IDREES H, et al. Large-scale image geo-localization using dominant sets[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2019, 41(1):148-161. [32] SVÄRM L, ENQVIST O, OSKARSSON M, et al. Accurate localization and pose estimation for large 3D models[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA:IEEE,2014:532-539. [33] LU Guoyu, KAMBHAMETTU C. Image-based indoor localization system based on 3D sfm model[C]//Proceedings of the Intelligent Robots and Computer Vision XXXI:Algorithms and Techniques. San Francisco, California, United States:SPIE, 2014. [34] SATTLER T, LEIBE B, KOBBELT L. Efficient & effective prioritized matching for large-scale image-based localization[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2017, 39(9):1744-1756. [35] ANGLADON V, GASPARINI S, CHARVILLAT V, et al. An evaluation of real-time RGB-D visual odometry algorithms on mobile devices[J]. Journal of Real-Time Image Processing, 2019, 16(5):1643-1660. [36] USENKO V, ENGEL J, STVCKLER J, et al. Direct visual-inertial odometry with stereo cameras[C]//Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden:IEEE, 2016:1885-1892. [37] ENGEL J, KOLTUN V, CREMERS D. Direct sparse odometry[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2018, 40(3):611-625. [38] FORSTER C, CARLONE L, DELLAERT F, et al. On-manifold preintegration for real-time visual——Inertial odometry[J]. IEEE Transactions on Robotics, 2017, 33(1):1-21. [39] XU Wenju, CHOI D, WANG Guanghui. Direct visual-inertial odometry with semi-dense mapping[J]. Computers &Electrical Engineering, 2018, 67(4):761-775. [40] LEUTENEGGER S, LYNEN S, BOSSE M, et al. Keyframe-based visual-inertial odometry using nonlinear optimization[J]. The International Journal of Robotics Research, 2015, 34(3):314-334. [41] LIN Yi, GAO Fei, QIN Tong, et al. Autonomous aerial navigation using monocular visual-inertial fusion[J]. Journal of Field Robotics, 2018, 35(1):23-51. [42] WANG Yong, LUO Xinbin, DING Lu, et al. Visual tracking via robust multi-task multi-feature joint sparse representation[J]. Multimedia Tools and Applications, 2018, 77(23):31447-3167. [43] DASH P P, PATRA D. Efficient visual tracking using multi-feature regularized robust sparse coding and quantum particle filter based localization[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(2):449-462. [44] 马威, 熊汉江, 郑先伟, 等. 室内三维场景纹理手机图片的自动更新方法[J]. 武汉大学学报(信息科学版), 2019, 44(2):254-259, 267. MA Wei, XIONG Hanjiang, ZHENG Xianwei, et al. Automatic textures updating method for 3D indoor scenes based on mobile phone images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2):254-259, 267. [45] 方志祥, 徐虹, 萧世伦, 等. 绝对空间定位到相对空间感知的行人导航研究趋势[J]. 武汉大学学报(信息科学版), 2018, 43(12):2173-2182. FANG Zhixiang, XU Hong, XIAO Shilun, et al. Pedestrian navigation research trend:from absolute space to relative space-based approach[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):2173-2182. [46] WANG Yankun, FAN Hong, CHEN Ruizhi, et al. Positioning locality using cognitive directions based on indoor landmark reference system[J]. Sensors, 2018, 18(4):1049. [47] WANG Yankun, FAN Hong, CHEN Ruizhi. Indoors locality positioning using cognitive distances and directions[J]. Sensors, 2017, 17(12):2828. [48] LASHKARI B, REZAZADEH J, FARAHBAKHSH R, et al. Crowdsourcing and sensing for indoor localization in IoT:a review[J]. IEEE Sensors Journal, 2019, 19(7):2408-2434. [49] ZHOU Baoding, LI Qingquan, ZHAI Guanxun, et al. A graph optimization-based indoor map construction method via crowdsourcing[J]. IEEE Access, 2018, 6(5):33692-33701. [50] NOREIKIS M, XIAO Yu, HU Jiyao, et al. SnapTask:towards efficient visual crowdsourcing for indoor mapping[C]//Proceedings of 2018 IEEE International Conference on Distributed Computing Systems (ICDCS). Vienna, Austria:IEEE, 2018:578-588. [51] GAO Ruipeng, ZHOU Bing, YE Fan, et al. Knitter:fast, resilient single-user indoor floor plan construction[C]//Proceedings of the INFOCOM 2017 IEEE Conference on Computer Communications. Atlanta, GA, USA:IEEE, 2017:1-9. [52] GAO Ruipeng, ZHOU Bing, YE Fan, et al. Fast and resilient indoor floor plan construction with a single user[J]. IEEE Transactions on Mobile Computing, 2019, 18(5):1083-1097. [53] GAO Ruipeng, ZHAO Mingmin, YE Tao, et al. Multi-story indoor floor plan reconstruction via mobile crowdsensing[J]. IEEE Transactions on Mobile Computing, 2016, 15(6):1427-1442. |