Acta Geodaetica et Cartographica Sinica ›› 2020, Vol. 49 ›› Issue (6): 787-797.doi: 10.11947/j.AGCS.2020.20190117
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
DENG Ruizhe, CHEN Qihao, CHEN Qi, LIU Xiuguo
Received:
2019-04-04
Revised:
2020-02-16
Online:
2020-06-20
Published:
2020-06-28
Supported by:
CLC Number:
DENG Ruizhe, CHEN Qihao, CHEN Qi, LIU Xiuguo. A deformable feature pyramid network for ship detection from remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 787-797.
[1] | 陈韬亦, 陈金勇, 赵和鹏. 基于Ecogniton的光学遥感图像舰船目标检测[J]. 无线电工程, 2013, 43(11):11-13, 22. CHEN Taoyi, CHEN Jinyong, ZHAO Hepeng. Ecognition-based ship detection on optical remote sensing images[J]. Radio Engineering of China, 2013, 43(11):11-13, 22. |
[2] | CRISP D J. A ship detection system for RADARSAT-2 dual-pol multi-look imagery implemented in the ADSS[C]//Proceedings of 2013 International Conference on Radar. Adelaide, SA, Australia:IEEE, 2016:318-323. |
[3] | CRISP David James. The state-of-the-art in ship detection in Synthetic Aperture Radar imagery[R]. Australian Government, Department of Defence,[s.n.], 2004. |
[4] | FINGAS M F, BROWN C E. Review of ship detection from airborne platforms[J]. Canadian Journal of Remote Sensing, 2001, 27(4):379-385. |
[5] | LENG Xiangguang, JI Kefeng, ZHOU Shilin, et al. An adaptive ship detection scheme for spaceborne SAR imagery[J]. Sensors,2016, 16(9):1345. |
[6] | WANG Chonglei, BI Fukun, ZHANG Weiping, et al. An intensity-space domain CFAR method for ship detection in HR SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(4):529-533. |
[7] | 伍广明, 陈奇, SHIBASAKI R, 等. 基于U型卷积神经网络的航空影像建筑物检测[J]. 测绘学报, 2018, 47(6):864-872. DOI:10.11947/j.AGCS.2018.20170651. WU Guangming, CHEN Qi, SHIBASAKI R, et al. High precision building detection from aerial imagery using a U-net like convolutional architecture[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):864-872. DOI:10.11947/j.AGCS.2018.20170651. |
[8] | REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal:MIT Press, 2015:91-99. |
[9] | LIU Wei, ANGUELOY D, ERHAN D, et al. SSD:single shot MultiBox detector[C]//Proceedings of the European Conference on Computer Vision. Amsterdam:Springer, 2016:21-37. |
[10] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA:IEEE, 2016:779-788. |
[11] | DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN:Object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York,United States:Curran Associates Inc., 2016:379-387. |
[12] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA:IEEE, 2017:936-944. |
[13] | KAREN Simonyan, ANDREW Zisserman. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the International Conference on Learning Representation. San-diego, California,USA:[s.n.],2014. |
[14] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, United States:IEEE, 2016:770-778. |
[15] | ZHANG Ruiqing, YAO Jian, ZHANG Kao, et al. S-CNN ship detection from high-resolution remote sensing images[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B7:423-430. |
[16] | LIU Yang, ZHANG Miaohui, XU Peng, et al. SAR ship detection using sea-land segmentation-based convolutional neural network[C]//Proceedings of International Workshop on Remote Sensing with Intelligent Processing. Shanghai, China:IEEE, 2017:1-4. |
[17] | KANG Miao, LENG Xiangguang, LIN Zhao, et al. A modified faster R-CNN based on CFAR algorithm for SAR ship detection[C]//Proceedings of International Workshop on Remote Sensing with Intelligent Processing. Shanghai, China:IEEE, 2017:1-4. |
[18] | KANG Miao, JI Kefeng, LENG Xiangguang, et al. Contextual region-based convolutional neural network with multilayer fusion for SAR ship detection[J]. Remote Sensing, 2017, 9(8):860. |
[19] | TANG Jiexiong, DENG Chenwei, HUANG Guangbin, et al. Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3):1174-1185. |
[20] | 高鑫, 李慧, 张义, 等. 基于可变形卷积神经网络的遥感影像密集区域车辆检测方法[J]. 电子与信息学报, 2018, 40(12):2812-2819. GAO Xin, LI Hui, ZHANG Yi, et al. Vehicle detection in remote sensing images of dense areas based on deformable convolution neural network[J]. Journal of Electronics and Information Technology, 2018, 40(12):2812-2819. |
[21] | 邓志鹏, 孙浩, 雷琳, 等. 基于多尺度形变特征卷积网络的高分辨率遥感影像目标检测[J]. 测绘学报, 2018, 47(9):1216-1227. DOI:10.11947/j.AGCS.2018.20170595. DENG Zhipeng, SUN Hao, LEI Lin, et al. Object detection in remote sensing imagery with multi-scale deformable convolutional networks[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9):1216-1227. DOI:10.11947/j.AGCS.2018.20170595. |
[22] | DAI Jifeng, QI Haozhi, XIONG Yuwen, et al. Deformable convolutional networks[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy:IEEE, 2017:764-773. |
[23] | YANG Xue, SUN Hao, FU Kun, et al. Automatic ship detection in remote sensing images from Google earth of complex scenes based on multiscale rotation dense feature pyramid networks[J]. Remote Sensing, 2018, 10(1):132. |
[24] | YANG Xue, SUN Hao, SUN Xian, et al. Position detection and direction prediction for arbitrary-oriented ships via multitask rotation region convolutional neural network[J]. IEEE Access, 2018, 6:50839-50849. |
[25] | CHEN Chaoyue, GONG Weiguo, CHEN Yongliang, et al. Object detection in remote sensing images based on a scene-contextual feature pyramid network[J]. Remote Sensing, 2019, 11(3):339. |
[26] | ABADI Martin, BARHAM Paul, CHEN Jianmin, et al. Tensorflow:large-scale machine learning on heterogeneous distributed systems[C]//Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation (OSDI'16), USENIX Association, USA:[s.n.], 265-283. |
[27] | XIA Guisong, BAI Xiang, DING Jian, et al. DOTA:a large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA:IEEE, 2018:3974-3983. |
[28] | SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA:IEEE, 2016:761-769. |
[29] | POWERS D M W. Evaluation:From precision, recall and f-measure to ROC, informedness, markedness & correlation[J]. Journal of Machine Learning Technologies, 2011, 2(1):37-63. |
[1] | CHENG Jiehai, HUANG Zhongyi, WANG Jianru, HE Shi. The automatic determination method of the optimal segmentation result of high-spatial resolution remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 658-667. |
[2] | LIANG Zheheng, LI Xiao, DENG Peng, SHENG Sen, JIANG Fuquan. Remote sensing image change detection fusion method integrating multi-scale feature attention [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 668-676. |
[3] | BAI Kun, MU Xiaodong, CHEN Xuebing, ZHU Yongqing, YOU Xuanang. Unsupervised remote sensing image scene classification based on semi-supervised learning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 691-702. |
[4] | HUANG Mingyi, WU Jun, GAO Jiongli. Seamless spherical video generation for multi-head panoramic camera(MPC) [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 703-717. |
[5] | WANG Dandi, XING Shuai, XU Qing, LIN Yuzhun, LI Pengcheng. Automatic sea-land waveform classification method for single-wavelength airborne LiDAR bathymetry [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 750-761. |
[6] | ZHANG Zhimin. Study of annual mass balance estimation in the Tibetan plateau glaciers based on remote sensing albedo [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 781-781. |
[7] | LI Yongqiang, LI Pengpeng, DONG Yahan, FAN Huilong. Automatic extraction and classification of pole-like objects from vehicle LiDAR point cloud [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 724-735. |
[8] | WANG Jingxue, LIU Suyan, WANG Weixi. A checking algorithm for pair-wise line matching based on collinearity constraint and matching redundancy [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 746-756. |
[9] | ZHAN Zongqian, HU Mengqi, MAN Yiyun. Multi-scale region growing point cloud filtering method based on surface fitting [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 757-766. |
[10] | HAN Bin, WU Yiquan. Robust estimation algorithm of active contour model for river extraction in SAR images [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 777-786. |
[11] | HUANG Liang. Research on change detection technology in multi-temporal remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 801-801. |
[12] | WU Wenhao, ZHANG Lei, LI Tao, LONG Sichun, DUAN Meng, ZHOU Zhiwei, ZHU Chuanguang, JIANG Tingchen. Coregistration scheme and error analysis of multi-mode SAR image based on geometric coregistration [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1439-1451. |
[13] | ZHAO Shengyin, AN Ru, ZHU Meiru. Urban change detection by aerial remote sensing using combining features of pixel-depth-object [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1452-1463. |
[14] | LIU Zhaoxin, ZHAO Liaoying, LI Xiaorun, CHEN Shuhan. Linear feature detection for hyperspectral subpixel mapping [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1464-1474. |
[15] | JI Shunping, QIN Zijie. Panoramic SLAM for multi-camera rig [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10): 1254-1265. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||