Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (5): 750-761.doi: 10.11947/j.AGCS.2022.20200314
• Marine Survey • Previous Articles Next Articles
WANG Dandi1,2, XING Shuai1,2, XU Qing1, LIN Yuzhun1, LI Pengcheng1
Received:
2020-07-29
Revised:
2021-11-22
Online:
2022-05-20
Published:
2022-05-28
Supported by:
CLC Number:
WANG Dandi, XING Shuai, XU Qing, LIN Yuzhun, LI Pengcheng. Automatic sea-land waveform classification method for single-wavelength airborne LiDAR bathymetry[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 750-761.
[1] | 申家双, 葛忠孝, 陈长林. 我国海洋测绘研究进展[J]. 海洋测绘, 2018, 38(4):1-10,21. SHEN Jiashuang, GE Zhongxiao, CHEN Changlin. Research progress of China's hydrographic surveying and charting[J]. Hydrographic Surveying and Charting, 2018, 38(4):1-10,21. |
[2] | 翟国君, 黄谟涛. 海洋测量技术研究进展与展望[J]. 测绘学报, 2017, 46(10):1752-1759. DOI:10.11947/j.AGCS.2017.20170309. ZHAI Guojun, HUANG Motao. The review of development of marine surveying technology[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1752-1759. DOI:10.11947/j.AGCS.2017.20170309. |
[3] | GUENTHER G C, LAROCQUE P E, LILLYCROP J W. Multiple surface channels in scanning hydrographic operational airborne LiDAR survey (SHOALS) airborne LiDAR[C]//Proceedings of 1994 International Society for Optical Engineering. Bergen, Norway:SPIE, 1994:422-431. DOI:10.1117/12.190084. |
[4] | SOSEBEE C R. Improvement of the land/water discrimination algorithm for the US Army Corps of engineers scanning hydrographic operational airborne LiDAR[D]. Ithaca:Cornell University, 2001. |
[5] | FERNANDEZ-DIAZ J C, GLENNIE C L, CARTER W E, et al. Early results of simultaneous terrain and shallow water bathymetry mapping using a single-wavelength airborne LiDAR sensor[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 7(2):623-635. DOI:10.1109/JSTARS.2013.2265255. |
[6] | ZHANG Yongjun, XIONG Xiaodong, WANG Mengqiu, et al. A fast aerial image matching method using airborne LiDAR point cloud and POS data[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1):26-36. DOI:10.11947/j.JGGS.2019.0104. |
[7] | PE'ERI S, MORGAN L V, PHILPOT W D, et al. Land-water interface resolved from airborne LiDAR bathymetry (ALB) waveforms[J]. Journal of Coastal Research, 2011:75-85. DOI:10.2307/29783137. |
[8] | 黄田程, 陶邦一, 毛志华, 等. 基于多通道海洋激光雷达的海陆波形分类[J]. 中国激光, 2017, 44(6):288-297. DOI:10.3788/CJL201744.0610002. HUANG Tiancheng, TAO Bangyi, MAO Zhihua, et al. Classification of sea and land waveform based on multi-channel ocean LiDAR[J]. Chinese Journal of Lasers, 2017, 44(6):288-297. DOI:10.3788/CJL201744.0610002. |
[9] | 曹彬才, 朱述龙, 邱振戈, 等. 利用回波波形特征实现激光雷达的水陆分离[J]. 海洋测绘, 2018, 38(3):12-16. CAO Bincai, ZHU Shulong, QIU Zhenge, et al. Water-land classification for LiDAR bathymetric data based on echo waveform characteristics[J]. Hydrographic Surveying and Charting, 2018, 38(3):12-16. |
[10] | HU Shanjiang, HE Yan, TAO Bangyi, et al. Classification of sea and land waveforms based on deep learning for airborne laser bathymetry[J]. Infrared and Laser Engineering, 2019, 48(11):1113004. DOI:10.3788/IRLA201948.1113004. |
[11] | ZHAO X, WANG X, ZHAO J, et al. Water-land classification using three-dimensional point cloud data of airborne LiDAR bathymetry based on elevation threshold intervals[J]. Journal of Applied Remote Sensing, 2019, 13(3):034511. DOI:10.1117/1.JRS.13.034511. |
[12] | GUENTHER G C, CUNNINGHAM A G, LAROCQUE P E, et al. Meeting the accuracy challenge in airborne bathymetry[C]//Proceedings of the 20th EARSeL Symposium:Workshop on LiDAR Remote Sensing of Land and Sea Held. Dresden, Germany:AGRIS, 2000:1-21. |
[13] | 丁凯. 单波段机载测深激光雷达全波形数据处理算法及应用研究[D]. 深圳:深圳大学, 2018. DING Kai. Research on the single-wavelength airborne LiDAR bathymetry full-waveform data processing algorithm and its application[D]. Shenzhen:Shenzhen University, 2018. |
[14] | MANDLBURGER G, PFENNIGBAUER M, PFEIFER N. Analyzing near water surface penetration in laser bathymetry-a case study at the River Pielach[C]//Proceedings of 2013 ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Antalya, Turkey:ISPRS, 2013. DOI:10.5194/isprsannals-Ⅱ-5-W2-175-2013. |
[15] | ZHAO J, ZHAO X, ZHANG H, et al. Shallow water measurements using a single green laser corrected by building a near water surface penetration model[J]. Remote Sensing, 2017, 9:426. DOI:10.3390/rs9050426. |
[16] | SCHWARZ R, PFEIFER N, PFENNIGBAUER M, et al. Exponential decomposition with implicit deconvolution of LiDAR backscatter from the water column[J]. PFG-Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2017, 85(3):159-167. DOI:10.1007/s41064-017-0018-z. |
[17] | XING Shuai, WANG Dandi, Xu Qing, et al. A depth-adaptive waveform decomposition method for airborne LiDAR bathymetry[J]. Sensors, 2019, 19(23):5065. DOI:10.3390/s19235065. |
[18] | 王丹菂, 徐青, 邢帅, 等. 一种由粗到精的机载激光测深信号检测方法[J]. 测绘学报, 2018, 47(8):1148-1159. DOI:10.11947/j.AGCS.2018.20170466. WANG Dandi, XU Qing, XING Shuai, et al. A coarse-to-fine signal detection method for airborne LiDAR bathymetry[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(8):1148-1159. DOI:10.11947/j.AGCS.2018.20170466. |
[19] | JUTZI B, STILLA U. Range determination with waveform recording laser systems using a Wiener filter[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 61(2):95-107. DOI:10.1016/j.isprsiprs.2006.09.001. |
[20] | LONGUET-HIGGINS M S. The effect of non-linearities on statistical distributions in the theory of sea waves[J]. Journal of Fluid Mechanics, 1963, 17(3):459-480. DOI:10.1017/S0022112063001452. |
[21] | CHAUVE A, MALLET C, BRETAR F, et al. Processing full-waveform LiDAR data:modelling raw signals[C]//Proceedings of 2007 International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 2007. Espoo, Finland:IAPRS, 2007:1-6. |
[22] | ROBERTSON W, WHITMAN D, ZHANG K, et al. Mapping shoreline position using airborne laser altimetry[J]. Journal of Coastal Research, 2004, 20(3):884-892. |
[23] | FUCHS E, TUELL G. Conceptual design of the CZMIL data acquisition system (DAS):integrating a new bathymetric LiDAR with a commercial spectrometer and metric camera for coastal mapping applications[C]//Proceedings of 2010 International Society for Optical Engineering. Orlando, Florida, United States:SPIE, 2010, 7695:76950U. DOI:10.1117/12.851919. |
[24] | COLLIN A, LONG B, ARCHAMBAULT P. Merging land-marine realms:spatial patterns of seamless coastal habitats using a multispectral LiDAR[J]. Remote Sensing of Environment, 2012, 123:390-399. DOI:10.1016/j.rse.2012.03.015. |
[25] | 胡善江, 贺岩, 陈卫标, 等. 机载双频激光雷达系统设计和研制[J]. 红外与激光工程, 2018, 47(9):78-93. DOI:10.3788/IRLA201847.0930001. HU Shanjiang, HE Yan, CHEN Weibiao, et al. Design of airborne dual-frequency laser radar system[J]. Infrared and Laser Engineering, 2018, 47(9):78-93. DOI:10.3788/IRLA201847.0930001. |
[26] | 贺岩, 胡善江, 陈卫标, 等. 国产机载双频激光雷达探测技术研究进展[J]. 激光与光电子学进展, 2018, 55(8):7-17. DOI:10.3788/LOP55.082801. HE Yan, HU Shanjiang, CHEN Weibiao, et al. Research progress of domestic airborne dual-frequency LiDAR detection technology[J]. Laser & Optoelectronics Progress, 2018, 55(8):7-17. DOI:10.3788/LOP55.082801. |
[1] | JI Xue, TANG Qiuhua, CHEN Yilan, LI Jie, DING Deqiu. Multibeam acoustic seabed classification combining SVM and adaptive boosting algorithm [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 972-981. |
[2] | ZHOU Jianwei, WU Yiquan. Building area recognition method of remote sensing image based on MRELBP feature, Franklin moment and SVM [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3): 355-364. |
[3] | YU Anzhu, LIU Bing, XING Zhipeng, YANG Fan, YANG Qimiao. Salient feature extraction method for hyperspectral image classification [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8): 985-995. |
[4] | WANG Dandi, XU Qing, XING Shuai, LIN Yuzhun, LI Pengcheng. A Coarse-to-fine Signal Detection Method for Airborne LiDAR Bathymetry [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(8): 1148-1159. |
[5] | WANG Dandi, XU Qing, XING Shuai, LIN Yuzhun, LI Pengcheng. Comparison of Signal Extraction Method for Airborne LiDAR Bathymetry Based on Deconvolution [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2): 161-169. |
[6] | DING Kai, LI Qingquan, ZHU Jiasong, WANG Chisheng, GUAN Minglei, CUI Yang, YANG Chao, XU Tian. Evaluation of Airborne LiDAR Bathymetric Parameters on the Northern South China Sea Based on MODIS Data [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2): 180-187. |
[7] | MA Chao, SUN Qun, CHEN Huanxin, XU Qing, YANG Hui. The Recognition of Overpass in Volunteered Geographic Information [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(2): 246-252. |
[8] | XU Suhui, MU Xiaodong, ZHAO Peng, MA Ji. Scene Classification of Remote Sensing Image Based on Multi-scale Feature and Deep Neural Network [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(7): 834-840. |
[9] | LI Hui, ZHANG Jinqu, CAO Yang, WANG Xingfang. Nonlinear Spectral Unmixing for Optimizing Per-pixel Endmember Sets [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1): 80-86. |
[10] | PENG Fukai, SHEN Yunzhong. Analysis of EnviSat Altimetric Data around Yangtze Estuary by Waveform Retracking [J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(6): 616-624. |
[11] | GONG Minxia, YUAN Sai, CHU Zhengwei, ZHANG Shuliang, FANG Caili. Underground Pipeline Data Matching Considering Multiple Spatial Similarities [J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(12): 1392-1400. |
[12] | . An Improved Spectral Similarity Measure Based on Kernel Mapping for Classification of Remotely Sensed Image with Kernel Mapping [J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(4): 0-590. |
[13] | . The Removal of Thick Cloud and Cloud Shadow of Remote Sensing Image Based on Support Vector Machine [J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(2): 225-231,. |
[14] | Kun Tan. Wavelet Support Vector Machines based on reproducing kernel Hilbert space for Hyperspectral Remote Sensing Image Classification [J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(2): 142-147. |
[15] | . Object-Oriented Classification of High Resolution Imagery Combining Support Vector Machine with Granular Computing [J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(2): 135-141. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 471
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 696
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||