[1] 杜培军, 夏俊士, 薛朝辉, 等. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2016, 20(2):236-256. DU Peijun, XIA Junshi, XUE Chaohui, et al. Review of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 2016, 20(2):236-256. [2] 刘冰, 余旭初, 张鹏强, 等. 面对高光谱影像分类的半监督阶梯网络[J]. 测绘科学技术学报, 2017, 34(6):576-581. LIU Bing, YU Xuchu, ZHANG Pengqiang, et al. Semi-supervised ladder network for hyperspectral image classification[J]. Journal of Geomatics Science and Technology, 2017, 34(6):576-581. [3] GHAMISI P, PLAZA J, CHEN Yushi, et al. Advanced spectral classifiers for hyperspectral images:a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(1):8-32. [4] GHAMISI P, MURA M D, BENEDIKTSSON J A. A survey on spectral-spatial classification techniques based on attribute profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5):2335-2353. [5] BENEDIKTSSON J A, PALMASON J A, SVEINSSON J R. Classification of hyperspectral data from urban areas based on extended morphological profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3):480-491. [6] 王雷光, 曹小汪, 郑雅兰, 等. 高光谱影像的引导滤波多尺度特征提取[J]. 遥感学报, 2018, 22(2):293-303. WANG Leiguang, CAO Xiaowang, ZHENG Yalan, et al. Multi-scale feature extraction of hyperspectral image with guided filtering[J]. Journal of Remote Sensing, 2018, 22(2):293-303. [7] SHEN Linlin, JIA Sen. Three-dimensional Gabor wavelets for pixel-based hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12):5039-5046. [8] LI Wei, CHEN Chen, SU Hongjun, et al. Local binary patterns and extreme learning machine for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7):3681-3693. [9] TARABALKA Y, BENEDIKTSSON J A, CHANUSSOT J. Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8):2973-2987. [10] 贾森, 吴奎霖, 朱家松, 等. 面向高光谱图像分类的超像素级Gabor特征融合方法研究[J]. 南京信息工程大学学报(自然科学版), 2018, 10(1):72-80. JIA Sen, WU Kuilin, ZHU Jiasong, et al. Superpixel-level Gabor feature fusion method for hyperspectral image classification[J]. Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 2018, 10(1):72-80. [11] KANG Xudong, LI Shutao, BENEDIKTSSON J A. Spectral-spatial hyperspectral image classification with edge-preserving filtering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5):2666-2677. [12] CHEN Yushi, LIN Zhouhan, ZHAO Xing, et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2094-2107. [13] LIU Bing, YU Xuchu, ZHANG Pengqiang, et al. A semi-supervised convolutional neural network for hyperspectral image classification[J]. Remote Sensing Letters, 2017, 8(9):839-848. [14] YUE Jun, ZHAO Wenzhi, MAO Shanjun, et al. Spectral-spatial classification of hyperspectral images using deep convolutional neural networks[J]. Remote Sensing Letters, 2015, 6(6):468-477. [15] LIU Bing, YU Xuchu, ZHANG Pengqiang, et al. Supervised deep feature extraction for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4):1909-1921. [16] MEI Shaohui, JI Jingyu, HOU Junhui, et al. Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8):4520-4533. [17] LIU Bing, YU Xuchu, ZHANG Pengqiang, et al. Spectral-spatial classification of hyperspectral image using three-dimensional convolution network[J]. Journal of Applied Remote Sensing, 2018, 12(1):016005. [18] LIU Bing, YU Xuchu, YU Anzhu, et al. Spectral-spatial classification of hyperspectral imagery based on recurrent neural networks[J]. Remote Sensing Letters, 2018, 9(12):1118-1127. [19] 崔丽群, 赵越, 胡志毅, 等. 复合域的显著性目标检测方法[J]. 中国图象图形学报, 2018, 23(6):846-856. CUI Liqun, ZHAO Yue, HU Zhiyi, et al. Saliency object detection method based on complex domains[J]. Journal of Image and Graphics, 2018, 23(6):846-856. [20] 何小飞, 邹峥嵘, 陶超, 等. 联合显著性和多层卷积神经网络的高分影像场景分类[J]. 测绘学报, 2016, 45(9):1073-1080. DOI:10.11947/j.AGCS.2016.20150612. HE Xiaofei, ZOU Zhengrong, TAO Chao, et al. Combined saliency with multi-convolutional neural network for high resolution remote sensing scene classification[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(9):1073-1080. DOI:10.11947/j.AGCS.2016.20150612. [21] SU Peifeng, LIU Daizhi, LI Xihai, et al. A saliency-based band selection approach for hyperspectral imagery inspired by scale selection[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4):572-576. [22] PERAZZI F, KRÄHENBVHL P, PRITCH Y, et al. Saliency filters:contrast based filtering for salient region detection[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA:IEEE, 2012:733-740. [23] LIU Tie, YUAN Zejian, SUN Jian, et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2):353-367. [24] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282. [25] 崔玲玲, 许金兰, 徐岗, 等. 融合双特征图信息的图像显著性检测方法[J]. 中国图象图形学报, 2018, 23(4):583-594. CUI Lingling, XU Jinlan, XU Gang, et al. Image saliency detection method based on a pair of feature maps[J]. Journal of Image and Graphics, 2018, 23(4):583-594. [26] 刘冰, 余旭初, 张鹏强, 等. 联合空-谱信息的高光谱影像深度三维卷积网络分类[J]. 测绘学报, 2019, 48(1):53-63. DOI:10.11947/j.AGCS.2019.20170578. LIU Bing, YU Xuchu, ZHANG Pengqiang, et al. Deep 3D convolutional network combined with spatial-spectral features for hyperspectral image classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1):53-63. DOI:10.11947/j.AGCS.2019.20170578. [27] 余旭初, 谭熊, 付琼莹, 等. 联合纹理和光谱特征的高光谱影像多核分类方法[J]. 测绘通报, 2014(9):38-42. DOI:10.13474/j.cnki.11-2246.2014.0289. YU Xuchu, TAN Xiong, FU Qiongying, et al. Combined texture-spectral feature for multiple kernel classification of hyperspectral images[J]. Bulletin of Surveying and Mapping, 2014(9):38-42. DOI:10.13474/j.cnki.11-2246.2014.0289. [28] LIU Bing, YU Xuchu, YU Anzhu, et al. Deep few-shot learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4):2290-2304. |