[1] FAUVEL M,TARABALKA Y,BENEDIKTSSON J A,et al.Advances in Spectral-Spatial Classification of Hyperspectral Images[J].Proceedings of the IEEE,2013,101(3):652-675. [2] 黄鸿,郑新磊.高光谱影像空-谱协同嵌入的地物分类算法[J].测绘学报,2016,45(8):964-972.DOI:10.11947/j.AGCS.2016.20150654. HUANG Hong,ZHENG Xinlei.Hyperspectral Image Land Cover Classification Algorithm Based on Spatial-spectral Coordination Embedding[J].Acta Geodaetica et Cartographica Sinica,2016,45(8):964-972.DOI:10.11947/j.AGCS.2016.20150654. [3] 杨钊霞,邹峥嵘,陶超,等.空-谱信息与稀疏表示相结合的高光谱遥感影像分类[J].测绘学报,2015,44(7):775-781.DOI:10.11947/j.AGCS.2015.20140207. YANG Zhaoxia,ZOU Zhengrong,TAO Chao,et al.Hyperspectral Image Classification Based on the Combination of Spatial-Spectral Feature and Sparse Representation[J].Acta Geodaetica et Cartographica Sinica,2015,44(7):775-781.DOI:10.11947/j.AGCS.2015.20140207. [4] 骆仁波,皮佑国.有监督的邻域保留嵌入的高光谱遥感影像特征提取[J].测绘学报,2014,43(5):508-513.DOI:10.13485/j.cnki.11-2089.2014.0079. LUO Renbo,PI Youguo.Supervised Neighborhood Preserving Embedding Feature Extraction of Hyperspectral Imagery[J].Acta Geodaetica et Cartographica Sinica,2014,43(5):508-513.DOI:10.13485/j.cnki.11-2089.2014.0079. [5] 李志敏,张杰,黄鸿,等.面向高光谱图像分类的半监督Laplace鉴别嵌入[J].电子与信息学报,2015,37(4):995-1001. LI Zhimin,ZHANG Jie,HUANG Hong,et al.Semi-Supervised Laplace Discriminant Embedding for Hyperspectral Image Classification[J].Journal of Electronics & Information Technology,2015,37(4):995-1001. [6] JACKSON J E.A User's Guide to Principal Components[M].New York:A Wiley-Interscience Publication,1992. [7] BANDOS T V,BRUZZONE L,CAMPS-VALLS G.Classification of Hyperspectral Images with Regularized Linear Discriminant Analysis[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(3):862-873. [8] BELKIN M,NIYOGI P.Laplacian Eigenmaps for Dimensionality Reduction and Data Representation[J].Neural Computation,2003,15(6):1373-1396. [9] ROWEIS S T,SAUL L K.Nonlinear Dimensionality Reduction by Locally Linear Embedding[J].Science,2000,290(5500):2323-2326. [10] HE Xiaofei,NIYOGI P.Locality Preserving Projections[C]//Advances in Neural Information Processing Systems.Cambridge:MIT Press,2004(16):153-160. [11] HE Xiaofei,CAI Deng,YAN Shuicheng,et al.Neighborhood Preserving Embedding[C]//Proceedings of the 10th IEEE International Conference on Computer Vision.Beijing:IEEE,2005:150-156. [12] CAI Deng,HE Xiaofei,HAN Jiawei.Semi-supervised Discriminant Analysis[C]//Proceedings of the 11th IEEE International Conference on Computer Vision.Rio de Janeiro:IEEE,2007:1-7. [13] SUGIYAMA M,IDÉ T,NAKAJIMA S,et al.Semi-supervised Local Fisher Discriminant Analysis for Dimensionality Reduction[J].Machine Learning,2010,78(1-2):35-61. [14] LIAO Wenzhi,PIZURICA A,SCHEUNDERS P,et al.Semisupervised Local Discriminant Analysis for Feature Extraction in Hyperspectral Images[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(1):184-198. [15] LUO Renbo,LIAO Wenzhi,HUANG Xin,et al.Feature Extraction of Hyperspectral Images with Semisupervised Graph Learning[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2016,9(9):4389-4399. [16] LI Jun,MARPU P R,PLAZA A,et al.Generalized Composite Kernel Framework for Hyperspectral Image Classification[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(9):4816-4829. [17] KANG Xudong,LI Shutao,BENEDIKTSSON J A.Spectral-Spatial Hyperspectral Image Classification with Edge-preserving Filtering[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(5):2666-2677. [18] TARABALKA Y,BENEDIKTSSON J A,CHANUSSOT J.Spectral-spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(8):2973-2987. [19] LI Jun,BIOUCAS-DIAS J M,PLAZA A.Spectral-Spatial Hyperspectral Image Segmentation Using Subspace Multinomial Logistic Regression and Markov Random Fields[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(3):809-823. [20] WEN Jinhua,FOWLER J E,HE Mingyi,et al.Orthogonal Nonnegative Matrix Factorization Combining Multiple Features for Spectral-Spatial Dimensionality Reduction of Hyperspectral Imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2016,54(7):4272-4286. [21] KANG Xudong,LI Shutao,BENEDIKTSSON J A.Feature Extraction of Hyperspectral Images with Image Fusion and Recursive Filtering[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(6):3742-3752. [22] XIA Junshi,BOMBRUN L,ADALI T,et al.Spectral-Spatial Classification of Hyperspectral Images Using ICA and Edge-Preserving Filter via an Ensemble Strategy[J].IEEE Transactions on Geoscience and Remote Sensing,2016,54(8):4971-4982. [23] 魏峰,何明一,梅少辉.空间一致性邻域保留嵌入的高光谱数据特征提取[J].红外与激光工程,2012,41(5):1249-1254. WEI Feng,HE Mingyi,MEI Shaohui.Hyperspectral Data Feature Extraction Using Spatial Coherence Based Neighborhood Preserving Embedding[J].Infrared and Laser Engineering,2012,41(5):1249-1254. [24] PU Hanye,CHEN Zhao,WANG Bin,et al.A Novel Spatial-Spectral Similarity Measure for Dimensionality Reduction and Classification of Hyperspectral Imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(11):7008-7022. [25] LUNGA D,PRASAD S,CRAWFORD M M,et al.Manifold-Learning-based Feature Extraction for Classification of Hyperspectral Data:A Review of Advances in Manifold Learning[J].IEEE Signal Processing Magazine,2014,31(1):55-66. [26] YUAN Haoiang,TANG Yuanyan,LU Yang,et al.Spectral-Spatial Classification of Hyperspectral Image Based on Discriminant Analysis[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(6):2035-2043. [27] ZHOU Yicong,PENG Jiangtao,CHEN C L P.Dimension Reduction Using Spatial and Spectral Regularized Local Discriminant Embedding for Hyperspectral Image Classification[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(2):1082-1095. [28] GAO Quanxue,MA Jingjie,ZHANG Hailin,et al.Stable Orthogonal Local Discriminant Embedding for Linear Dimensionality Reduction[J].IEEE Transactions on Image Processing,2013,22(7):2521-2531. [29] WEINBERGER K Q,SAUL L K.An Introduction to Nonlinear Dimensionality Reduction by Maximum Variance Unfolding[C]//Proceedings of the 21st Association on Advances in Artificial Intelligence.Boston,MA:AAAI,2006:1683-1686. |