Acta Geodaetica et Cartographica Sinica ›› 2019, Vol. 48 ›› Issue (12): 1595-1603.doi: 10.11947/j.AGCS.2019.20190466
• Review • Previous Articles Next Articles
CHEN Xiaoyong1, HE Haiqing1, ZHOU Junchao1, AN Puyang1, CHEN Ting2
Received:
2019-10-27
Revised:
2019-12-05
Published:
2019-12-24
Supported by:
CLC Number:
CHEN Xiaoyong, HE Haiqing, ZHOU Junchao, AN Puyang, CHEN Ting. Progress and future of image matching in low-altitude photogrammetry[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1595-1603.
[1] 李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报(信息科学版), 2014, 39(5):505-513, 540. LI Deren, LI Ming. Research advance and application prospect of unmanned aerial vehicle remote sensing system[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5):505-513, 540. [2] 何海清. 低空摄影测量航带重构及数据处理方法研究[D]. 武汉:武汉大学, 2013. HE Haiqing. The study of strips reconstruction oriented data processing methodology in low-altitude photogrammetry[D]. Wuhan:Wuhan University, 2013. [3] MASRY S E. An automatic method for height profile determination[J]. The Photogrammetric Record, 1973, 7(42):728-730. [4] ACKERMANN F. High precision digital image correlation[C]//Proceedings of the 39th Photogrammetric Week. Stuttgart:University of Stuttgart, 1983. [5] 张祖勋, 张剑清. 数字摄影测量学[M]. 2版. 武汉:武汉大学出版社, 2012. ZHANG Zuxun, ZHANG Jianqing. Digital photogrammetry[M]. 2nd ed. Wuhan:Wuhan University Press, 2012. [6] MORAVEC H P. Obstacle avoidance and navigation in the real world by a seeing robot rover[R]. Pittsburgh, Pennsylvania:Carnegie Mellon University, 1980. [7] SMITH S M, BRADY J M. SUSAN:a new approach to low level image processing[J]. International Journal of Computer Vision, 1997, 23(1):45-78. [8] HARRIS C, STEPHENS M. A combined comer and edge detector[C]//Proceedings of the 4th Alvey Vision Conference. Manchester, UK:[s.n.], 1988:147-152. [9] TOMASI C, KANADE T. Detection and tracking of point features[R]. Pittsburgh:Carnegie Mellon University, 1991. [10] MIKOLAJCZYK K, SCHMID C. Scale & affine invariant interest point detectors[J]. International Journal of Computer Vision, 2004, 60(1):63-86. [11] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110. [12] WITKIN A. Scale-space filtering:a new approach to multi-scale description[C]//Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. San Diego, CA:IEEE, 1984:150-153. [13] ROSTEN E, DRUMMOND T. Machine learning for high-speed corner detection[C]//Proceedings of the 9th European Conference on Computer Vision. Graz, Austria:Springer, 2006:430-443. [14] MAIR E, HAGER G D, BURSCHKA D, et al. Adaptive and generic corner detection based on the accelerated segment test[C]//Proceedings of the European Conference on Computer Vision. Heraklion, Crete, Greece:Springer, 2010:183-196. [15] HARALICK R M. Ridges and valleys on digital images[J]. Computer Vision, Graphics, and Image Processing, 1983, 22(1):28-38. [16] SOBEL I, FELDMAN G. A 3×3 isotropic gradient operator for image processing[R]. California:Stanford Artificial Intelligence Project, 1968. [17] CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6):679-698. [18] ASGHARI M H, JALALI B. Edge detection in digital images using dispersive phase stretch transform[J]. International Journal of Biomedical Imaging, 2015, 2015:687819. [19] MATAS J, CHUM O, URBAN M, et al. Robust wide-baseline stereo from maximally stable extremal regions[J]. Image and Vision Computing, 2004, 22(10):761-767. [20] DENG Hongli, ZHANG Wei, MORTENSEN E, et al. Principal curvature-based region detector for object recognition[C]//Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN:IEEE, 2007:1-8. [21] SHI Jianbo, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905. [22] BELLAVIA F, COLOMBO C. Rethinking the sGLOH descriptor[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):931-944. [23] WAN Xue, LIU Jianguo, YAN Hongshi, et al. Illumination-invariant image matching for autonomous UAV localisation based on optical sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119:198-213. [24] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110. [25] BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3):346-359. [26] TOLA E, LEPETIT V, FUA P. DAISY:an efficient dense descriptor applied to wide-baseline stereo[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5):815-830. [27] CHEN Jian, TIAN Jie, LEE N, et al. A partial intensity invariant feature descriptor for multimodal retinal image registration[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(7):1707-1718. [28] ZHANG Shiliang, TIAN Qi, LU Ke, et al. Edge-SIFT:discriminative binary descriptor for scalable partial-duplicate mobile search[J]. IEEE Transactions on Image Processing, 2013, 22(7):2889-2902. [29] LIAO Kaiyang, LIU Guizhong, HUI Youshi. An improvement to the SIFT descriptor for image representation and matching[J]. Pattern Recognition Letters, 2013, 34(11):1211-1220. [30] SEDAGHAT A, EBADI H. Remote sensing image matching based on adaptive binning SIFT descriptor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(10):5283-5293. [31] FAN Bin, WU Fuchao, HU Zhanyi. Rotationally invariant descriptors using intensity order pooling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10):2031-2045. [32] FAN Bin, WU Fuchao, HU Zhanyi. Aggregating gradient distributions into intensity orders:a novel local image descriptor[C]//Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, CO:IEEE, 2011:2377-2384. [33] WANG Henhua, FAN Bin, WANG Gang, et al. Exploring local and overall ordinal information for robust feature description[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(11):2198-2211. [34] YANG Yi, DUAN Fajie, MA Ling, et al. A robust method for constructing rotational invariant descriptors[J]. Signal Processing:Image Communication, 2018, 60:224-236. [35] CALONDER M, LEPETIT V, OZUYSAL M, et al. BRIEF:computing a local binary descriptor very fast[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7):1281-1298. [36] ALAHI A, ORTIZ R, VANDERGHEYNST P. FREAK:fast retina keypoint[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI:IEEE, 2012:510-517. [37] YANG Xin, CHENG K T T. Local difference binary for ultrafast and distinctive feature description[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(1):188-194. [38] FAN Bin, KONG Qingqun, TRZCINSKI T, et al. Receptive fields selection for binary feature description[J]. IEEE Transactions on Image Processing, 2014, 23(6):2583-2595. [39] HEIKKILÄ M, PIETIKÄNEN M, SCHMID C. Description of interest regions with local binary patterns[J]. Pattern Recognition, 2009, 42(3):425-436. [40] WANG Han, YOON S M, HAN D K, et al. A feature descriptor based on the local patch clustering distribution for illumination-robust image matching[J]. Pattern Recognition Letters, 2017, 94:46-54. [41] DUO Jingyun, CHEN Pengfeng, ZHAO Long. LCO:a robust and efficient local descriptor for image matching[J]. AEU-International Journal of Electronics and Communications, 2017, 72:234-242. [42] SIMO-SERRA E, TORRAS C, MORENO-NOGUER F. DaLI:deformation and light invariant descriptor[J]. International Journal of Computer Vision, 2015, 115(2):136-154. [43] YE Yuanxin, SHAN Jie, BRUZZONE L, et al. Robust registration of multimodal remote sensing images based on structural similarity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5):2941-2958. [44] YE Yuanxin, SHAN Jie, HAO Siyuan, et al. A local phase based invariant feature for remote sensing image matching[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 142:205-221. [45] SEDAGHAT A, ALIZADEH NAEINI A. DEM orientation based on local feature correspondence with global DEMs[J]. GIScience & Remote Sensing, 2018, 55(1):110-129. [46] SEDAGHAT A, EBADI H. Distinctive order based self-similarity descriptor for multi-sensor remote sensing image matching[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 108:62-71. [47] CHEN Shuhan, LI Xiaorun, YANG Han, et al. Robust local feature descriptor for multisource remote sensing image registration[J]. Journal of Applied Remote Sensing, 2018, 12(1):015005. [48] 肖雄武. 具备结构感知功能的倾斜摄影测量场景三维重建[J]. 测绘学报,2019,48(6):802. DOI:10.11947/j.AGCS.2019.20180319. XIAO Xiongwu. Oblique photogrammetry based scene 3D reconstruction with structure sensing functions[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6):802. DOI:10.11947/j.AGCS.2019.20180319. [49] 柯涛. 旋转多基线数字近景摄影测量[D]. 武汉:武汉大学, 2008. KE Tao. Rotating multi-baseline digital close-up photogrammetry[D]. Wuhan:Wuhan University, 2008. [50] JACOBSEN K. Geometry of vertical and oblique image combinations[C]//Proceedings of the 28th EARSeL Symposium. Istanbul:[s.n.], 2009:16-23. [51] 许彪. 基于航空影像的真正射影像制作关键技术研究[D]. 武汉:武汉大学, 2012. XU Biao. Research on key technology of true orthophoto generation based on aerial images[D]. Wuhan:Wuhan University, 2012. [52] 邓宝松, 高宇, 魏迎梅. 图像匹配中具有仿射不变性特征的定量分析[J]. 信号处理, 2008, 24(2):227-230. DENG Baosong, GAO Yu, WEI Yingmei. A quantificational analysis of affine invariant features for image matching[J]. Signal Processing, 2008, 24(2):227-230. [53] TUYTELAARS T, VAN GOOL L. Wide baseline stereo matching based on local, affinely invariant regions[C]//Proceedings of British Machine Vision Conference. London, UK:BMVC, 2000:412-422. [54] MIKOLAJCZYK K, SCHMID C. An affine invariant interest point detector[C]//Proceedings of the 7th European Conference on Computer Vision. Copenhagen, Denmark:Springer, 2002:128-142. [55] MATAS J, CHUM O, URBAN M, et al. Robust wide baseline stereo from maximally stable extremal regions[C]//Proceedings of British Machine Vision Conference. Cardiff, UK:BMVC, 2002:384-393. [56] MIKOLAJCZYK K, TUYTELAARS T, SCHMID C, et al. A comparison of affine region detectors[J]. International Journal of Computer Vision, 2005, 65(1-2):43-72. [57] KIMMEL R, ZHANG Cuiping, BRONSTEIN A M. Are MSER features really interesting?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11):2316-2320. [58] MOREl J M, YU Guoshen. ASIFT:a new framework for fully affine invariant image comparison[J]. SIAM Journal on Imaging Sciences, 2009, 2(2):438-469. [59] 程亮, 龚健雅, 宋小刚, 等. 面向宽基线立体影像匹配的高质量仿射不变特征提取方法[J]. 测绘学报, 2008, 37(1):77-82. DOI:10.3321/j.issn:1001-1595.2008.01.014. CHENG Liang, GONG Jianya, SONG Xiaogang, et al. A method for affine invariant feature extraction with high quality for wide baseline stereo image matching[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(1):77-82. DOI:10.3321/j.issn:1001-1595.2008.01.014. [60] 张力, 张继贤. 基于多基线影像匹配的高分辨率遥感影像DEM的自动生成[J]. 武汉大学学报(信息科学版), 2008, 33(9):943-946. ZHANG Li, ZHANG Jixian. Automatic DEM generation from high-resolution satellite imagery based on multiple-baseline image matching[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9):943-946. [61] 杨化超, 姚国标, 王永波. 基于SIFT的宽基线立体影像密集匹配[J]. 测绘学报, 2011, 40(5):537-543. YANG Huachao, YAO Guobiao, WANG Yongbo. Dense matching for wide base-line stereo images based on SIFT[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(5):537-543. [62] 姚国标, 邓喀中, 张力, 等. 融合互补仿射不变特征的倾斜立体影像高精度自动配准方法[J]. 测绘学报, 2013, 42(6):869-876, 883. YAO Guobiao, DENG Kazhong, ZHANG Li, et al. An automated registration method with high accuracy for oblique stereo images based on complementary affine invariant features[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(6):869-876, 883. [63] 翁璐斌, 田原, 王彦情, 等. 复杂地形下基于三视约束的景象匹配方法[J]. 航空学报, 2008, 29(5):1288-1296. WENG Lubin, TIAN Yuan, WANG Yanqing, et al. Novel scene matching method for complex terrain based on three-view constraints[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5):1288-1296. [64] KÖSER K, KOCH R. Perspectively invariant normal features[C]//Proceedings of 2007 IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil:IEEE, 2007:1-8. [65] ZAHARESCU A, BOYER E, VARANASI K, et al. Surface feature detection and description with applications to mesh matching[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL:IEEE, 2009:373-380. [66] GOSSOW D, WEIKERSDORFER D, BEETZ M. Distinctive texture features from perspective-invariant keypoints[C]//Proceedings of the 21st IEEE International Conference on Pattern Recognition. Tsukuba, Japan:IEEE, 2012:2764-2767. [67] LIU Wei, WANG Yongtian, CHEN Jing, et al. A completely affine invariant image-matching method based on perspective projection[J]. Machine Vision and Applications, 2012, 23(2):231-242. [68] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444. [69] SCHMIDHUBER J. Deep learning in neural networks:an overview[J]. Neural Networks, 2015, 61:85-117. [70] ŽBONTAR J, LECUN Y. Computing the stereo matching cost with a convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA:IEEE, 2015:1592-1599. [71] SEKI A, POLLEFEYS M. SGM-Nets:semi-global matching with neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI:IEEE, 2017:6640-6649. [72] MAYER N, ILG E, HÄUSSER P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV:IEEE, 2016:4040-4048. [73] KENDALL A, MARTIROSYAN H, DASGUPTA S, et al. End-to-end learning of geometry and context for deep stereo regression[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy:IEEE, 2017:66-75. [74] CHANG Jiaren, CHEN Yongsheng. Pyramid stereo matching network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT:IEEE, 2018:5410-5418. [75] PANG Jiahao, SUN Wenxiu, REN J S J, et al. Cascade residual learning:a two-stage convolutional neural network for stereo matching[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops. Venice, Italy:IEEE, 2017:878-886. |
[1] | ZHANG Liangpei, HE Jiang, YANG Qianqian, XIAO Yi, YUAN Qiangqiang. Data-driven multi-source remote sensing data fusion: progress and challenges [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1317-1337. |
[2] | CHENG Tao, ZHANG Yang, James Haworth. Network and graph-based SpaceTimeAI: conception, method and applications [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1629-1639. |
[3] | GONG Jianya, HUAN Linxi, ZHENG Xianwei. Deep learning interpretability analysis methods in image interpretation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 873-884. |
[4] | ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885-896. |
[5] | GONG Jianya, ZHANG Mi, HU Xiangyun, ZHANG Zhan, LI Yansheng, Jiang Liangcun. The design of deep learning framework and model for intelligent remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 475-487. |
[6] | MAO Wenjing, WANG Weilin, JIAO Limin, LIU Anbao. Continuous spatial coverage PM2.5 concentration forecast in China based on deep learning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 361-372. |
[7] | JIN Fei, GUAN Kai, LIU Zhi, HAN Jiarong, RUI Jie, LI Qinggao. A performing analysis of unsupervised dense matching feature extraction networks [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 426-436. |
[8] | HE Zhimeng, DING Haiyong, AN Bingqi. E-Unet: a atrous convolution-based neural network for building extraction from high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 457-467. |
[9] | ZHANG Yongsheng, ZHANG Zhenchao, TONG Xiaochong, JI Song, YU Ying, LAI Guangling. Progress and challenges of geospatial artificial intelligence [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1137-1146. |
[10] | AI Tinghua. Some thoughts on deep learning enabling cartography [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1170-1182. |
[11] | GONG Jianya, XU Yue, HU Xiangyun, JIANG Liangcun, ZHANG Mi. Status analysis and research of sample database for intelligent interpretation of remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1013-1022. |
[12] | YANG Bisheng, HAN Xu, DONG Zhen. A deep learning network for semantic labeling of large-scale urban point clouds [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1059-1067. |
[13] | TAO Chao, YIN Ziwei, ZHU Qing, LI Haifeng. Remote sensing image intelligent interpretation: from supervised learning to self-supervised learning [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1122-1134. |
[14] | YAN Xiongfeng, AI Tinghua, YANG Min, ZHENG Jianbin. Shape cognition in map space using deep auto-encoder learning [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(6): 757-765. |
[15] | GONG Danchao, HAN Yilong, HUANG Xu. Global refinement of building boundary with line feature constraints for stereo dense image matching [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(6): 833-846. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||