[1] 何义斌, 吴书帮, 谢洪燕, 等. 多波束异常测深数据检测方法实践[J]. 测绘科学, 2004, 29(1):50-52. HE Yibin, WU Shubang, XIE Hongyan, et al. Study of detection and filter of outlier on the sounding data of MES[J]. Science of Surveying and Mapping, 2004, 29(1):50-52. [2] 翟国君, 黄谟涛. 海洋测量技术研究进展与展望[J]. 测绘学报, 2017, 46(10):1752-1759. DOI:10.11947/j.AGCS.2017.20170309. ZHAI Guojun, HUANG Motao. The review of development of marine surveying technology[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1752-1759. DOI:10.11947/j.AGCS.2017.20170309. [3] 李家彪, 王小波, 华祖根, 等. 多波束勘测原理技术与方法[M]. 北京:海洋出版社, 1999:197-207. LI Jiabiao, WANG Xiaobo, HUA Zugen, et al. Principles and methods of multibeam surveying[M]. Beijing:China Ocean Press, 1999:197-207. [4] 赵建虎, 刘经南. 多波束测深及图像数据处理[M]. 武汉:武汉大学出版社, 2008. ZHAO Jianhu, LIU Jingnan. Multibeam echosounding and image data processing[M]. Wuhan:Wuhan University Press, 2008. [5] 刘雁春. 海洋测深空间结构及其数据处理[M]. 北京:测绘出版社, 2003. LIU Yanchun. Spatial structure of bathymetry and its data processing[M]. Beijing:Surveying and Mapping Press, 2003. [6] HERLIHY D R, STEPKA T N, RULON T D. Filtering erroneous soundings from multibeam survey data[J]. International Hydrographic Review, 1992,69(2):67-76. [7] WARE C. A system for cleaning high volume bathymetry[J]. International Hydrographic Review, 1992, 69(2):77-94. [8] SHAW S, ARNOLD J. Automated error detection in multibeam bathymetry data[C]//Proceedings of the Ocean'93. Victoria, BC, Canada:IEEE, 1993(2):Ⅱ/89-Ⅱ/94. [9] EEG J. On the identification of spikes in soundings[J]. International Hydrographic Review, 2015, LXXⅡ(1):33-41. [10] LIRAKIS C B, BONGIOVANNI K P. Automated multibeam data cleaning and target detection[C]//Proceedings of the Oceans 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings. Providence, RI, USA:IEEE, 2000:719-723. [11] MANN M, AGATHOKLIS P, ANTONIOU A. Automatic outlier detection in multibeam data using median filtering[C]//Proceedings of 2001 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing. Victoria, BC, Canada:IEEE, 2001:690-693. [12] CALDER B R, MAYER L A. Robust automatic multi-beam bathymetric processing[C]//Proceedings of the Center for Coastal and Ocean Mapping. Norfolk, VA, USA:Hydrographic Society of America, 2001. [13] JAKOBSSON M, CALDER B, MAYER L. On the effect of random errors in gridded bathymetric compilations[J]. Journal of Geophysical Research:Solid Earth, 2002, 107(B12):ETG 14-1-ETG 14-11. [14] CALDER B R, MAYER L A. Automatic processing of high-rate, high-density multibeam echosounder data[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(6):24-48. [15] GOODFELLOW I J, POUGETABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Advances in Neural Information Processing Systems, 2014(3):2672-2680. [16] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge:The MIT Press, 2016. [17] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv:1511.06434, 2015. [18] DENTON E, CHINTALA S, SZLAM A, et al. Deep generative image models using a laplacian pyramid of adversarial networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada:MIT Press, 2015. [19] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv preprint arXiv:1411.1784, 2014. [20] 李金洪, 黄永昌. 深度学习之TensorFlow入门、原理与进阶实战[M]. 北京:机械工业出版社, 2018. LI Jinhong, HUANG Yongchang. Getting started and best practices with tensorFlow for deep learning[M]. Beijing:China Machine Press, 2018. [21] WELLING M, ROSEN-ZVI M, HINTON G E. Exponential family harmoniums with an application to information retrieval[C]//Proceedings of the 17th International Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada:MIT Press, 2004. [22] VINCENT P. A connection between score matching and denoising autoencoders[J]. Neural Computation, 2011, 23(7):1661-1674. [23] DUCHI J, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011(12):2121-2159. |