[1] 吴亮, 胡云安. 遥感图像自动道路提取方法综述[J]. 自动化学报, 2010, 36(7): 912-922. WU Liang, HU Yun’an. A survey of automatic road extraction from remote sensing images[J]. Acta Automatica Sinica, 2010, 36(7): 912-922. [2] MNIH V, HINTON G E. Learning to detect roads in high-resolution aerial images[C]//Proceedings of European Conference on Computer Vision: Part VI, September 5-11, 2010, Heraklion, Crete, Greece. Heraklion: Springer, 210-223. [3] MNIH V. Machine learning for aerial image labeling[D]. Toronto: University of Toronto, 2013. [4] WANG Jun, SONG Jingwei, CHEN Mingquan, et al. Road network extraction: a neural-dynamic framework based on deep learning and a finite state machine[J]. International Journal of Remote Sensing, 2015, 36(12): 3144-3169. [5] ALSHEHHI R, MARPU P R, WOON W L, et al. Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 139-149. [6] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, June 7-12, 2015, Boston, MA. Boston: IEEE, 2015: 3431-3440. [7] ZHONG Zilong, LI J, CUI Weihong, et al. Fully convolutional networks for building and road extraction: preliminary results[C]//Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 10-15, 2016, Beijing, China. Beijing: IEEE, 2016: 1591-1594. [8] WEI Yanan, WANG Zulin, XU Mai. Road structure refined CNN for road extraction in aerial image[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 709-713. [9] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer International Publishing, 2015: 234-241. [10] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. [11] 贺浩, 王仕成, 杨东方, 等. 基于Encoder-Decoder网络的遥感影像道路提取方法[J]. 测绘学报, 2019, 48(3): 330-338. DOI: 10.11947/j.AGCS.2019.20180005. HE Hao, WANG Shicheng, YANG Dongfang, et al. A road extraction method for remote sensing image based on Encoder-Decoder network[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(3): 330-338. DOI: 10.11947/j.AGCS.2019.20180005. [12] PANBOONYUEN T, JITKAJORNWANICH K, LAWAWIROJWONG S, et al. Road segmentation of remotely-sensed images using deep convolutional neural networks with landscape metrics and conditional random fields[J]. Remote Sensing, 2017, 9(7): 9070680. [13] SUN Tao, CHEN Zehui, YANG Wenxiang, et al. Stacked U-nets with multi-output for road extraction[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), June 18-22, 2018, Salt Lake City, UT. Salt Lake City: IEEE Computer Society, 2018. [14] HE H, WANG S C, YANG D F, et al. Light encoder-decoder network for road extraction of remote sensing images[J]. Journal of Applied Remote Sensing. 2019, 13(3): 034510. [15] LI Yunsheng, YUAN Lu, VASCONCELOS N. Bidirectional learning for domain adaptation of semantic segmentation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 1-8, 2019, Long Beach, USA. Long Beach: IEEE, 1-10. [16] TSAI Y H, HUNG W C, SCHULTER S, et al. Learning to adapt structured output space for semantic segmentation[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 18-23, 2018, Salt Lake City, UT, USA. Salt Lake City: IEEE, 2018. [17] HE Hao, YANG Dongfang, WANG Shicheng, et al. Road extraction by using atrous spatial pyramid pooling integrated encoder-decoder network and structural similarity loss[J]. Remote Sensing, 2019, 11(9): 1015. [18] CLEVERT D A, UNTERTHINER T, HOCHREITER S. Fast and accurate deep network learning by exponential linear units (ELUs)[C]//Proceedings of the 4th International Conference on Learning Representations. San Juan, Puerto Rico: [s.n.], 2016. [19] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on Machine Learning, July 6-11, 2015, Lille, France. Lille: JMLR, 2015: 448-456. [20] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation. arXiv: 1706.05587, 2017. [21] ZHU Junyan, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of IEEE International Conference on Computer Vision, October 22-29, 2017, Venice, Italy. Venice: IEEE, 2017: 2242-2251. [22] ISOLA P, ZHU Junyan, ZHOU Tinghui, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, July 21-26, 2017, Honolulu, USA. Honolulu: IEEE, 2017: 5967-5976. [23] COSTEA D, LEORDEANU M. Aerial image geolocalization from recognition and matching of roads and intersections[C]//Proceedings of British Machine Vision Conference, September 19-22, 2016, York, UK. York: BMVA, 1-12. [24] WIEDEMANN C, HEIPKE C, MAYER H, et al. Empirical evaluation of automatically extracted road axes[C]//Proceedings of the 9th Australasian Remote Sensing Photogrammetry Conference. Sydney: The University of New South Wales, 1998: 172-187. [25] KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations. CA, San Diego: [s.n.], 2015. [26] GONG Jianya. Photogrammetry and deep learning[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1): 1-15 doi:10.11947/j.JGGS.2018.0101. |