Acta Geodaetica et Cartographica Sinica ›› 2025, Vol. 54 ›› Issue (6): 1094-1106.doi: 10.11947/j.AGCS.2025.20240439
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
Zibo DONG1(
), Jingxue WANG2(
), Lijing BU2, Lin FANG3, Zhenghui XU1
Received:2024-10-28
Revised:2025-05-08
Online:2025-07-14
Published:2025-07-14
Contact:
Jingxue WANG
E-mail:472320795@stu.lntu.edu.cn;xiaoxue1861@163.com
About author:DONG Zibo (2001—), male, postgraduate, majors in remote sensing image information extraction. E-mail: 472320795@stu.lntu.edu.cn
Supported by:CLC Number:
Zibo DONG, Jingxue WANG, Lijing BU, Lin FANG, Zhenghui XU. MAFNet: building extraction method from remote sensing images based on multi-scale atrous fusion network[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1094-1106.
Tab. 1
Comparison of segmentation accuracy of different networks on the WHU building dataset"
| 模型 | IoU | Accuracy | Precision | Recall | F1值 |
|---|---|---|---|---|---|
| FCN-8s | 79.71 | 95.43 | 88.68 | 89.76 | 88.60 |
| U-Net | 77.47 | 95.36 | 88.36 | 87.46 | 87.90 |
| DeepLabV3+ | 86.07 | 96.48 | 92.28 | 90.05 | 91.15 |
| SegNet | 82.70 | 96.95 | 91.39 | 89.74 | 90.55 |
| BuildFormer | 85.96 | 97.03 | 89.51 | 89.45 | 89.47 |
| HD-Net | 84.59 | 96.41 | 89.03 | 88.89 | 88.96 |
| SDSC-UNet | 86.04 | 97.24 | 91.97 | 90.88 | 91.42 |
| MAFNet | 88.01 | 97.55 | 92.38 | 93.22 | 92.79 |
Tab. 2
Comparison of segmentation accuracy of different networks on the Massachusetts building dataset"
| 模型 | IoU | Accuracy | Precision | Recall | F1值 |
|---|---|---|---|---|---|
| FCN-8s | 71.82 | 93.96 | 81.44 | 80.94 | 81.18 |
| U-Net | 73.43 | 94.12 | 82.35 | 83.66 | 82.99 |
| DeepLabV3+ | 76.67 | 94.74 | 85.87 | 86.67 | 86.26 |
| SegNet | 74.29 | 94.21 | 84.76 | 83.11 | 83.93 |
| BuildFormer | 77.31 | 95.01 | 87.26 | 86.32 | 86.79 |
| HD-Net | 76.44 | 94.49 | 85.20 | 85.66 | 85.43 |
| SDSC-UNet | 79.38 | 94.87 | 87.22 | 86.61 | 86.91 |
| MAFNet | 82.21 | 95.15 | 88.37 | 87.38 | 87.87 |
Tab. 3
Comparison of extraction efficiency"
| 模型 | 训练过程处理速度/(batch/s) | 训练总时长/h | 测试过程处理速度/(batch/s) | 测试总时长/min | IoU/(%) | F1值/(%) |
|---|---|---|---|---|---|---|
| FCN-8s | 3.0 | 30.1 | 6.2 | 3.2 | 79.71 | 88.60 |
| U-Net | 3.2 | 28.6 | 6.8 | 3.0 | 77.47 | 87.90 |
| DeepLabV3+ | 2.2 | 39.6 | 5.0 | 4.0 | 86.07 | 91.15 |
| SegNet | 2.8 | 32.2 | 6.0 | 3.4 | 82.70 | 90.55 |
| BuildFormer | 2.5 | 36.3 | 5.6 | 3.6 | 85.96 | 89.47 |
| HD-Net | 2.7 | 32.4 | 5.8 | 3.5 | 84.59 | 88.96 |
| SDSC-UNet | 2.4 | 37.8 | 5.1 | 3.9 | 86.04 | 91.42 |
| MAFNet | 2.7 | 32.4 | 5.9 | 3.4 | 88.01 | 92.79 |
Tab. 4
The influence of residual structure and MAF module on the accuracy index of extraction results"
| 模型 | IoU | Accuracy | Precision | Recall | F1值 |
|---|---|---|---|---|---|
| U-Net | 77.47 | 95.36 | 88.36 | 87.46 | 87.90 |
| Res_UNet | 82.24 | 96.27 | 90.50 | 91.41 | 90.95 |
| Res_CBAM_UNet | 79.37 | 96.05 | 90.69 | 89.15 | 89.91 |
| Res_ECA_UNet | 85.09 | 97.15 | 92.47 | 91.34 | 92.07 |
| Res_SE_UNet | 83.41 | 95.71 | 91.40 | 90.51 | 90.94 |
| MAFNet | 88.01 | 97.55 | 92.38 | 93.22 | 92.79 |
Tab. 5
The influence of mixed loss function on the accuracy index of extraction results"
| 损失函数 | IoU | Accuracy | Precision | Recall | F1值 |
|---|---|---|---|---|---|
| LB | 86.58 | 97.05 | 92.14 | 89.67 | 91.03 |
| LD | 85.41 | 95.84 | 91.84 | 90.76 | 91.29 |
| LL | 86.18 | 96.27 | 92.01 | 93.26 | 92.63 |
| 0.8LB+0.1LD+0.1LL | 85.24 | 96.17 | 90.34 | 90.67 | 90.51 |
| 0.6LB+0.1LD+0.3LL | 86.96 | 97.34 | 90.91 | 93.31 | 92.09 |
| 0.6LB+0.2LD+0.2LL | 88.01 | 97.55 | 92.38 | 93.22 | 92.79 |
| 0.6LB+0.3LD+0.1LL | 85.94 | 96.21 | 90.66 | 92.29 | 91.47 |
| 0.4LB+0.3LD+0.3LL | 86.38 | 96.54 | 91.06 | 91.43 | 91.24 |
| 0.33LB+0.33LD+0.33LL | 85.99 | 96.42 | 91.13 | 90.95 | 91.03 |
| 0.2LB+0.6LD+0.2LL | 85.61 | 96.23 | 90.45 | 91.30 | 90.88 |
| 0.2LB+0.4LD+0.4LL | 85.72 | 96.67 | 90.87 | 91.56 | 91.21 |
| 0.2LB+0.2LD+0.6LL | 86.43 | 96.59 | 90.98 | 91.27 | 91.12 |
| [1] | LUO Lin, LI Pengpeng, YAN Xuesong. Deep learning-based building extraction from remote sensing images: a comprehensive review[J]. Energies, 2021, 14(23): 7982. |
| [2] |
范荣双, 陈洋, 徐启恒, 等. 基于深度学习的高分辨率遥感影像建筑物提取方法[J]. 测绘学报, 2019, 48(1): 34-41. DOI: .
doi: 10.11947/j.AGCS.2019.20170638 |
|
FAN Rongshuang, CHEN Yang, XU Qiheng, et al. A high-resolution remote sensing image building extraction method based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1): 34-41. DOI: .
doi: 10.11947/j.AGCS.2019.20170638 |
|
| [3] | 吕少云, 李佳田, 阿晓荟, 等. Res_ASPP_UNet++:结合分离卷积与空洞金字塔的遥感影像建筑物提取网络[J]. 遥感学报, 2023, 27(2): 502-519. |
| LÜ Shaoyun, LI Jiatian, A Xiaohui, et al. Res_ASPP_UNet++: building an extraction network from remote sensing imagery combining depthwise separable convolution with atrous spatial pyramid pooling[J]. National Remote Sensing Bulletin, 2023, 27(2): 502-519. | |
| [4] | PESARESI M, GERHARDINGER A, KAYITAKIRE F. A robust built-up area presence index by anisotropic rotation-invariant textural measure[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2008, 1(3): 180-192. |
| [5] | 谭衢霖. 高分辨率多光谱影像城区建筑物提取研究[J]. 测绘学报, 2010, 39(6): 618-623. |
| TAN Qulin. Urban building extraction from VHR multi-spectral images using object-based classification[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(6): 618-623. | |
| [6] |
杜守基, 邹峥嵘, 张云生, 等. 融合LiDAR点云与正射影像的建筑物图割优化提取方法[J]. 测绘学报, 2018, 47(4): 519-527. DOI: .
doi: 10.11947/j.AGCS.2018.20160534 |
|
DU Shouji, ZOU Zhengrong, ZHANG Yunsheng, et al. A building extraction method via graph cuts algorithm by fusion of LiDAR point cloud and orthoimage[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(4): 519-527. DOI: .
doi: 10.11947/j.AGCS.2018.20160534 |
|
| [7] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
| [8] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. |
| [9] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2024-05-03]. https://arxiv.org/abs/1409.1556. |
| [10] | SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. |
| [11] | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of 2015 Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2015: 234-241. |
| [12] | ZHOU Zongwei, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of 2018 Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham: Springer International Publishing, 2018: 3-11. |
| [13] | ZHANG Renhe, ZHANG Qian, ZHANG Guixu. SDSC-UNet: dual skip connection ViT-based U-shaped model for building extraction[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 3270303. |
| [14] | LI Yuxuan, HONG Danfeng, LI Chenyu, et al. HD-Net: high-resolution decoupled network for building footprint extraction via deeply supervised body and boundary decomposition[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 209: 51-65. |
| [15] | QIU Weiyan, GU Lingjia, GAO Fang, et al. Building extraction from very high-resolution remote sensing images using refine-UNet[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 3243609. |
| [16] | 徐孝彬, 张好杰, 白建波, 等. 基于改进Unet的分布式光伏建筑物高精度分割方法[J]. 太阳能学报, 2023, 44(11): 82-90. |
| XU Xiaobin, ZHANG Haojie, BAI Jianbo, et al. High-precision segmentation method of distributed photovoltaic buildings based on improved UNet[J]. Acta Energiae Solaris Sinica, 2023, 44(11): 82-90. | |
| [17] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
| [18] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. [2024-05-03]. https://arxiv.org/abs/2010.11929. |
| [19] | WANG Libo, FANG Shenghui, MENG Xiaoliang, et al. Building extraction with vision transformer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-11. |
| [20] |
胡明洪, 李佳田, 姚彦吉, 等. 结合多路径的高分辨率遥感影像建筑物提取SER-UNet算法[J]. 测绘学报, 2023, 52(5): 808-817. DOI: .
doi: 10.11947/j.AGCS.2023.20210691 |
|
HU Minghong, LI Jiatian, YAO Yanji, et al. SER-UNet algorithm for building extraction from high-resolution remote sensing image combined with multipath[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 808-817. DOI: .
doi: 10.11947/j.AGCS.2023.20210691 |
|
| [21] | 刘卓涛, 龚循强, 夏元平, 等. KU-Net:改进U-Net的高分辨率遥感影像建筑物提取方法[J]. 遥感信息, 2024, 39(5): 121-131. |
| LIU Zhuotao, GONG Xunqiang, XIA Yuanping, et al. KU-Net: an improved U-Net method for building extraction from high resolution remote sensing imagery[J]. Remote Sensing Information, 2024, 39(5): 121-131. | |
| [22] | WANG Xiaolei, HU Zirong, SHI Shouhai, et al. A deep learning method for optimizing semantic segmentation accuracy of remote sensing images based on improved UNet[J]. Scientific Reports, 2023, 13(1): 7600. |
| [23] | WANG Libo, LI Rui, ZHANG Ce, et al. UNetFormer: a UNet-like Transformer for efficient semantic segmentation of remote sensing urban scene imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 196-214. |
| [24] | YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. [2024-05-03]. https://arxiv.org/abs/1511.07122. |
| [25] | CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1-10 |
| [26] | HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. |
| [27] | JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[C]//Proceedings of 2015 Advances in Neural Information Processing Systems. Montreal: MIT Press, 2015: 2017-2025. |
| [28] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of 2018 European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 3-19. |
| [29] | MAO Anqi, MOHRI M, ZHONG Yutao. Cross-entropy loss functions: theoretical analysis and applications[EB/OL]. [2024-05-03]. https://arxiv.org/abs/2304.07288v2. |
| [30] | LI Xiaoya, SUN Xiaofei, MENG Yuxian, et al. Dice loss for data-imbalanced NLP tasks[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 465-476. |
| [31] | BERMAN M, TRIKI A R, BLASCHKO M B. The lovász-Softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4413-4421. |
| [32] | JI Shunping, WEI Shiqing, LU Meng. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1): 574-586. |
| [33] | MNIH V. Machine learning for aerial image labeling[D]. Toronto: University of Toronto, 2013. |
| [34] | BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. |
| [35] | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1800-1807. |
| [36] | WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539. |
| [1] | Chao WANG, Tianyu CHEN, Tong ZHANG, Tanvir AHMED, Liqiang JI, Tao XIE, Jiajun YANG, Shuai WANG. Multi-sensor optical remote sensing images change detection based on global differential enhancement module and balance penalty loss [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 873-887. |
| [2] | Liangxiong GONG, Xinghua LI, Yuanming CHENG, Xingyou ZHAO, Renping XIE, Honggen WANG. A lightweight remote sensing images change detection network utilizing spatio-temporal difference enhancement and adaptive feature fusion [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 136-153. |
| [3] | Jialing LI, Ji QI, Weipeng LU, Chao TAO. Self-supervised learning based urban functional zone classification by integrating optical remote sensing image-OSM data [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 154-164. |
| [4] | Zhiwei XIE, Shuaizhi ZHAI, Fengyuan ZHANG, Min CHEN, Lishuang SUN. Object-oriented high-resolution image classification using inductive graph neural networks [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1610-1623. |
| [5] | Haiyan GU, Yi YANG, Haitao LI, Lijian SUN, Shaopeng DING, Shiqi LIU. Dynamic construction of high-resolution remote sensing image sample datasets and intelligent interpretation applications [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1165-1179. |
| [6] | Daifeng PENG, Chenchen ZHAI, Dingwei ZHOU, Yongjun ZHANG, Haiyan GUAN, Yufu ZANG. High-resolution optical images change detection based on global information enhancement by pyramid semantic token [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1195-1211. |
| [7] | Jicheng WANG, Anmei GUO, Li SHEN, Tian LAN, Zhu XU, Zhilin LI. Multi-level contrastive learning for weakly supervised extraction of urban solid wastes dump from high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1212-1223. |
| [8] | Shaopeng DING, Xiushan LU, Rufei LIU, Yi YANG, Haiyan GU, Haitao LI. Building change detection method combining object feature guidance and multiple attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1224-1235. |
| [9] | Xuetao LI, Pancheng WANG, Yongnian ZENG. Urban impervious surface extraction based on the deep features of high-resolution remote sensing image and ensemble learning [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 700-711. |
| [10] | HE Yi, YANG Wang, ZHU Qing. An InSAR phase unwrapping method based on R2AU-Net [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 435-449. |
| [11] | Shiyan PANG, Jingjing HAO, Zhiqi ZUO, Jingjing LAN, Xiangyun HU. A high-resolution remote sensing images change detection method via the integration of dense connections and self-attention mechanisms [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2244-2253. |
| [12] | Liying WANG, Kangli ZHANG, Xinao LI, Ze YOU, Yong FENG. An algorithm for building extraction from airborne LiDAR data under adaptive local spatial-spectral consistency [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2349-2360. |
| [13] | JIANG Baode, HANG Wei, XU Shaofen, WU Yong. Multi-scale building instance refinement extraction from remote sensing images by fusing with decentralized adaptive attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1504-1514. |
| [14] | LIAN Renbao, ZHANG Zhenmin, LIAO Yipeng, ZOU Changzhong, HUANG Liqin. A quick road centreline extraction method from remote sensing images combining with geodesic distance field and curve smoothing [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(8): 1317-1329. |
| [15] | HU Gongming, YANG Chuncheng, XU Li, SHANG Haibin, WANG Zefan, QIN Zhilong. Improved U-Net remote sensing image semantic segmentation method [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(6): 980-989. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||