Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (12): 2244-2253.doi: 10.11947/j.AGCS.2024.20230454
• Intelligent Image Processing • Previous Articles
Shiyan PANG1(), Jingjing HAO1, Zhiqi ZUO2, Jingjing LAN1, Xiangyun HU3,4(
)
Received:
2023-10-10
Published:
2025-01-06
Contact:
Xiangyun HU
E-mail:pangsy@ccnu.edu.cn;huxy@whu.edu.cn
About author:
PANG Shiyan (1987—), female, PhD, associate professor, majors in remote sensing image interpretation and deep learning applications. E-mail: pangsy@ccnu.edu.cn
Supported by:
CLC Number:
Shiyan PANG, Jingjing HAO, Zhiqi ZUO, Jingjing LAN, Xiangyun HU. A high-resolution remote sensing images change detection method via the integration of dense connections and self-attention mechanisms[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2244-2253.
Tab. 1
Metrics of different networks on the WHU and LEVIR datasets"
模型 | WHU-CD | LEVIR-CD | CDD | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IoU | OA | Precision | Recall | F1值 | Kappa | IoU | OA | Precision | Recall | F1值 | Kappa | IoU | OA | Precision | Recall | F1值 | Kappa | |
DTCDSCN | 82.19 | 99.31 | 92.70 | 87.87 | 90.22 | 89.86 | 79.90 | 98.86 | 89.04 | 88.61 | 88.82 | 88.23 | 86.15 | 98.22 | 94.08 | 91.08 | 92.56 | 91.55 |
SNUNet | 79.09 | 99.17 | 90.68 | 86.08 | 88.32 | 87.89 | 82.16 | 98.97 | 94.83 | 86.01 | 90.21 | 85.76 | 88.13 | 98.47 | 93.99 | 93.39 | 93.69 | 92.82 |
BIT | 81.29 | 99.26 | 90.66 | 88.71 | 89.68 | 89.29 | 82.63 | 98.99 | 93.88 | 87.33 | 90.49 | 89.95 | 89.19 | 98.62 | 95.12 | 93.47 | 94.29 | 93.50 |
ChangeFormer | 76.28 | 99.07 | 92.11 | 81.62 | 86.55 | 86.07 | 78.21 | 98.78 | 89.74 | 85.89 | 87.77 | 87.13 | 84.53 | 98.00 | 94.99 | 88.47 | 91.62 | 90.48 |
ChangerEx | 72.09 | 98.77 | 80.43 | 87.42 | 83.78 | 83.14 | 81.62 | 98.99 | 91.76 | 88.08 | 89.88 | 89.35 | 89.52 | 98.67 | 96.82 | 92.24 | 94.47 | 93.71 |
TNUNet-CD | 85.44 | 99.44 | 93.61 | 90.74 | 92.15 | 91.86 | 84.15 | 99.13 | 92.10 | 90.70 | 91.40 | 90.94 | 94.61 | 99.33 | 97.97 | 96.50 | 97.23 | 96.85 |
[1] | FANG S, LI K, SHAO J, et al. SNUNet-CD: a densely connected Siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5. |
[2] | LIU W, JI X, LIU J, et al. A novel unsupervised change detection method with structure consistency and GFLICM based on UAV images[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 91-102. |
[3] |
张祖勋, 姜慧伟, 庞世燕, 等. 多时相遥感影像的变化检测研究现状与展望[J]. 测绘学报, 2022, 51(7): 1091-1107. DOI:.
doi: 10.11947/j.AGCS.2022.20220070 |
ZHANG Zuxun, JIANG Huiwei, PANG Shiyan, et al. Review and prospect in change detection of multi-temporal remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1091-1107. DOI:.
doi: 10.11947/j.AGCS.2022.20220070 |
|
[4] | ZAGORUYKO S, KOMODAKIS N. Learning to compare image patches via convolutional neural networks[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 4353-4361. |
[5] | ZHAN Yang, FU Kun, YAN Menglong, et al. Change detection based on deep siamese convolutional network for optical aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1845-1849. |
[6] | DAUDT R C, LE SAUX B, BOULCH A. Fully convolutional siamese networks for change detection[C]//Proceedings of 2018 IEEE International Conference on Image Processing. Athens: IEEE, 2018: 4063-4067. |
[7] | ZHANG Wuxia, LU Xiaoqiang. The spectral-spatial joint learning for change detection in multispectral imagery[J]. Remote Sensing, 2019, 11(3): 240. |
[8] | CHEN Hao, LI Wenyuan, SHI Zhenwei. Adversarial instance augmentation for building change detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-16. |
[9] | PENG Daifeng, ZHANG Yongjun, GUAN Haiyan. End-to-end change detection for high resolution satellite images using improved UNet++[J]. Remote Sensing, 2019, 11(11): 1382. |
[10] | HUANG Gao, LIU Zhuang, VAN DER M L, et al. Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4700-4708. |
[11] | ZHOU Zongwei, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1867. |
[12] |
王超, 王帅, 陈晓, 等. 联合UNet++和多级差分模块的多源光学遥感影像对象级变化检测[J]. 测绘学报, 2023, 52(2): 283-296. DOI:.
doi: 10.11947/j.AGCS.2023.20220202 |
WANG Chao, WANG Shuai, CHEN Xiao, et al. Object-level change detection of multi-sensor optical remote sensing images combined with UNet++ and multi-level difference module[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 283-296. DOI:.
doi: 10.11947/j.AGCS.2023.20220202 |
|
[13] |
梁哲恒, 黎宵, 邓鹏, 等. 融合多尺度特征注意力的遥感影像变化检测方法[J]. 测绘学报, 2022, 51(5): 668-676. DOI:.
doi: 10.11947/j.AGCS.2022.20200540 |
LIANG Zheheng, LI Xiao, DENG Peng, et al. Remote sensing image change detection fusion method integrating multi-scale feature attention[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 668-676. DOI:.
doi: 10.11947/j.AGCS.2022.20200540 |
|
[14] | ZHANG Chenxiao, YUE Peng, TAPETE D, et al. A deeply supervised image fusion network for change detection in high resolution bitemporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 183-200. |
[15] | PENG Xueli, ZHONG Ruofei, LI Zhen, et al. Optical remote sensing image change detection based on attention mechanism and image difference[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(9): 7296-7307. |
[16] | CHEN Hao, SHI Zhenwei. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10): 1662-1684. |
[17] | JIANG Huiwei, HU Xiangyun, LI Kun, et al. PGA-SiamNet: pyramid feature-based attention-guided Siamese network for remote sensing orthoimagery building change detection[J]. Remote Sensing, 2020, 12(3): 484. |
[18] | SHI Qian, LIU Mengxi, LI Shengchen, et al. A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-16. |
[19] | LIU Yi, PANG Chao, ZHAN Zongqian, et al. Building change detection for remote sensing images using a dual-task constrained deep siamese convolutional network model[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(5): 811-815. |
[20] | ZHANG Lin, HU Xiangyun, ZHANG Mi, et al. Object-level change detection with a dual correlation attention-guided detector[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 177, 147-160. |
[21] | CHEN Pan, ZHANG Bing, HONG Danfeng, et al. FCCDN: feature constraint network for VHR image change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 187: 101-119. |
[22] | FANG Sheng, LI Kaiyu, LI Zhe. Changer: feature interaction is what you need for change detection[EB/OL]. [2023-09-01]. https://arxiv.org/abs/2209.08290v1. |
[23] | CHEN Hao, QI Zipeng, SHI Zhenwei. Remote sensing image change detection with transformers[J]. IEEE Transactions on Geos-cience and Remote Sensing, 2021, 60: 1-14. |
[24] | BANDARA W G C, PATEL V M. A Transformer-based Siamese network for change detection[C]//Proceedings of 2022 IEEE International Geoscience and Remote Sensing Symposium. Kuala Lumper: IEEE, 2022: 207-210. |
[25] | ZHENG Zhuo, ZHONG Yanfei, TIAN Shiqi, et al. ChangeMask: deep multi-task Encoder-Transformer-Decoder architecture for semantic change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183: 228-239. |
[26] | CHEN Zhanlong, ZHOU Yuan, WANG Bin, et al. EGDE-Net: a building change detection method for high-resolution remote sensing imagery based on edge guidance and differential enhancement[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 191, 203-222. |
[27] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. |
[28] | DENG Jia, DONG Wei, SOCHER R, et al. Imagenet: a large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 248-255. |
[29] | SELVARAJU R R, COGSWELL M, DAS A, et al. Gradcam: visual explanations from deep networks via gradient-based localization[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 618-626. |
[1] | Xin YAN, Li SHEN, Junjie PAN, Yanshuai DAI, Jicheng WANG, Xiaoli ZHENG, Zhi-lin LI. Weakly supervised building change detection integrating multi-scale feature fusion and spatial refinement for high resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1586-1597. |
[2] | Zhiwei XIE, Shuaizhi ZHAI, Fengyuan ZHANG, Min CHEN, Lishuang SUN. Object-oriented high-resolution image classification using inductive graph neural networks [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1610-1623. |
[3] | Tao XU, Yuanwei YANG, Xianjun GAO, Zhiwei WANG, Yue PAN, Shaohua LI, Lei XU, Yanjun WANG, Bo LIU, Jing YU, Fengmin WU, Haoyu SUN. Integrated graph convolution and multi-scale features for the overhead catenary system point cloud semantic segmentation [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1624-1633. |
[4] | Xiaogang NING, Hanchao ZHANG, Ruiqian ZHANG. Practical framework and methodology for high-performance intelligent invariant detection in remote sensing imagery [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1098-1112. |
[5] | Haiyan GU, Yi YANG, Haitao LI, Lijian SUN, Shaopeng DING, Shiqi LIU. Dynamic construction of high-resolution remote sensing image sample datasets and intelligent interpretation applications [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1165-1179. |
[6] | Daifeng PENG, Chenchen ZHAI, Dingwei ZHOU, Yongjun ZHANG, Haiyan GUAN, Yufu ZANG. High-resolution optical images change detection based on global information enhancement by pyramid semantic token [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1195-1211. |
[7] | Jicheng WANG, Anmei GUO, Li SHEN, Tian LAN, Zhu XU, Zhilin LI. Multi-level contrastive learning for weakly supervised extraction of urban solid wastes dump from high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1212-1223. |
[8] | Shaopeng DING, Xiushan LU, Rufei LIU, Yi YANG, Haiyan GU, Haitao LI. Building change detection method combining object feature guidance and multiple attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1224-1235. |
[9] | Huafei YU, Tianqi QIU, Zhe ZHOU, Chongya GONG, Tianyuan XIAO, Min YANG, Tinghua AI. Drainage pattern recognition supported by graph Transformer [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2075-2085. |
[10] | JIANG Baode, HANG Wei, XU Shaofen, WU Yong. Multi-scale building instance refinement extraction from remote sensing images by fusing with decentralized adaptive attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1504-1514. |
[11] | WEI Chuntao, GONG Cheng, ZHOU Yongxu. A change detection network with joint spatial constraints and differential feature aggregation [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1538-1547. |
[12] | LIAN Renbao, ZHANG Zhenmin, LIAO Yipeng, ZOU Changzhong, HUANG Liqin. A quick road centreline extraction method from remote sensing images combining with geodesic distance field and curve smoothing [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(8): 1317-1329. |
[13] | ZHANG Yichao, ZHENG Xiangtao, LU Xiaoqiang. Hyperspectral image classification method based on hierarchical transformer network [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1139-1147. |
[14] | GU Xiaohu, LI Zhengjun, MIAO Jianhao, LI Xinghua, SHEN Huanfeng. Dual-channel parallel hybrid convolutional neural networks based classification method for high-resolution remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 798-807. |
[15] | WU Chenhao, XIANG Longgang, ZHANG Yeting, WU Huayi. Geography-aware representation learning for trajectory similarity computation [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 670-678. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 168
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 175
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||