Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (4): 700-711.doi: 10.11947/j.AGCS.2024.20220389
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
Xuetao LI(), Pancheng WANG, Yongnian ZENG()
Received:
2022-06-17
Revised:
2024-01-04
Published:
2024-05-13
Contact:
Yongnian ZENG
E-mail:778978421@qq.com;ynzeng@csu.edu.cn
About author:
LI Xuetao (1993—), male, master, majors in remote sensing of urban environment and application. E-mail: 778978421@qq.com
Supported by:
CLC Number:
Xuetao LI, Pancheng WANG, Yongnian ZENG. Urban impervious surface extraction based on the deep features of high-resolution remote sensing image and ensemble learning[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 700-711.
Tab. 2
Evaluation of extraction accuracy of urban impermeable surface"
方法 | 密集程度 | ACC/(%) | P/(%) | R/(%) | F1值 | Kappa系数 |
---|---|---|---|---|---|---|
本文方法 | 稀疏 | 98.26 | 91.51 | 85.12 | 0.88 | 0.87 |
中等密集 | 97.29 | 92.17 | 88.16 | 0.90 | 0.89 | |
密集 | 91.66 | 90.61 | 92.78 | 0.92 | 0.83 | |
复杂 | 93.91 | 91.41 | 90.25 | 0.91 | 0.86 | |
集成学习 | 稀疏 | 96.32 | 74.85 | 78.00 | 0.76 | 0.74 |
中等密集 | 92.41 | 68.98 | 83.20 | 0.76 | 0.71 | |
密集 | 78.92 | 93.09 | 62.06 | 0.78 | 0.58 | |
复杂 | 88.84 | 85.44 | 80.46 | 0.83 | 0.75 | |
随机森林 | 稀疏 | 62.51 | 97.10 | 75.86 | 0.69 | 0.66 |
中等密集 | 59.11 | 89.24 | 74.89 | 0.66 | 0.60 | |
密集 | 90.16 | 78.02 | 62.47 | 0.74 | 0.67 | |
复杂 | 73.15 | 85.92 | 91.72 | 0.81 | 0.70 | |
支持向量机 | 稀疏 | 67.31 | 95.66 | 83.89 | 0.75 | 0.72 |
中等密集 | 65.00 | 91.24 | 80.99 | 0.72 | 0.67 | |
密集 | 92.12 | 72.03 | 47.63 | 0.63 | 0.44 | |
复杂 | 67.86 | 83.30 | 95.40 | 0.79 | 0.66 | |
U-Net | 稀疏 | 97.62 | 91.39 | 75.96 | 0.84 | 0.82 |
中等密集 | 95.74 | 90.99 | 77.23 | 0.844 | 0.81 | |
密集 | 89.85 | 89.75 | 87.32 | 0.90 | 0.80 | |
复杂 | 89.78 | 87.72 | 80.86 | 0.83 | 0.77 | |
SegNet | 稀疏 | 92.74 | 71.11 | 81.02 | 0.76 | 0.72 |
中等密集 | 96.25 | 76.69 | 73.16 | 0.75 | 0.73 | |
密集 | 84.95 | 85.60 | 83.71 | 0.85 | 0.70 | |
复杂 | 88.53 | 85.47 | 79.30 | 0.82 | 0.74 |
[1] | WENG Qihao. Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends[J]. Remote Sensing of Environment, 2012, 117:34-49. |
[2] | 徐涵秋, 王美雅. 地表不透水面信息遥感的主要方法分析[J]. 遥感学报, 2016, 20(5):1270-1289. |
XU Hanqiu, WANG Meiya. Remote sensing-based retrieval of ground impervious surfaces[J]. Journal of Remote Sensing, 2016, 20(5):1270-1289. | |
[3] | YUAN Fei, BAUER M E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery[J]. Remote Sensing of Environment, 2007, 106(3):375-386. |
[4] | 曾永年, 张璎璎, 张鸿辉, 等. 城市扩展强度及其地表热特性遥感定量分析[J]. 测绘学报, 2010, 39(1):65-70,94. |
ZENG Yongnian, ZHANG Yingying, ZHANG Honghui, et al. A quantitative analysis of urban growth and associated thermal characteristics using remote sensing data[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(1):65-70,94. | |
[5] | YU Huafei, ZHAO Yaolong, FU Yingchun, et al. Spatiotemporal variance assessment of urban rainstorm waterlogging affected by impervious surface expansion: a case study of Guangzhou, China[J]. Sustainability, 2018, 10(10):3761. |
[6] | 宫鹏, 黎夏, 徐冰. 高分辨率影像解译理论与应用方法中的一些研究问题[J]. 遥感学报, 2006, 10(1):1-5. |
GONG Peng, LI Xia, XU Bing. Interpretation theory and application method development for information extraction from high resolution remotely sensed data[J]. Journal of Remote Sensing, 2006, 10(1):1-5. | |
[7] | HU Xuefei, WENG Qihao. Impervious surface area extraction from IKONOS imagery using an object-based fuzzy method[J]. Geocarto International, 2011, 26(1):3-20. |
[8] | 李德仁, 童庆禧, 李荣兴, 等. 高分辨率对地观测的若干前沿科学问题[J]. 中国科学:地球科学, 2012, 42(6):805-813. |
LI Deren, TONG Qingxi, LI Rongxing, et al. Some frontier scientific problems of high-resolution earth observation[J]. Scientia Sinica (Terrae), 2012, 42(6):805-813. | |
[9] | 张翰超, 宁晓刚, 王浩, 等. 基于高分辨率遥感影像的2000—2015年中国省会城市高精度扩张监测与分析[J]. 地理学报, 2018, 73(12):2345-2363. |
ZHANG Hanchao, NING Xiaogang, WANG Hao, et al. High accuracy urban expansion monitoring and analysis of China's provincial capitals from 2000 to 2015 based on high-resolution remote sensing imagery[J]. Acta Geographica Sinica, 2018, 73(12):2345-2363. | |
[10] | HUANG X, WANG Y, LI J, et al. High-resolution urban land-cover mapping and landscape analysis of the 42 major cities in China using ZY-3 satellite images[J]. Sci Bull (Beijing), 2020, 65(12):1039-1048. |
[11] | NEYNS R, CANTERS F. Mapping of urban vegetation with high-resolution remote sensing: a review[J]. Remote Sensing, 2022, 14(4):1031. |
[12] | BLASCHKE T, HAY G J, KELLY M, et al. Geographic object-based image analysis-towards a new paradigm[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87:180-191. |
[13] | JOZDANI S E, JOHNSON B A, CHEN Dongmei. Comparing deep neural networks, ensemble classifiers, and support vector machine algorithms for object-based urban land use/land cover classification[J]. Remote Sensing, 2019, 11(14):1713. |
[14] | JOHNSON B, XIE Zhixiao. Classifying a high resolution image of an urban area using super-object information[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 83:40-49. |
[15] | MYINT S W, GOBER P, BRAZEL A, et al. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery[J]. Remote Sensing of Environment, 2011, 115(5):1145-1161. |
[16] | TREITZ P. High spatial resolution remote sensing data for forest ecosystem classification an examination of spatial scale[J]. Remote Sensing of Environment, 2000, 72(3):268-289. |
[17] | WANG L, SOUSA W P, GONG P. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery[J]. International Journal of Remote Sensing, 2004, 25(24):5655-5668. |
[18] | YU Qian, GONG Peng, CLINTON N, et al. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery[J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(7):799-811. |
[19] | HUANG Xin, ZHANG Liangpei. An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(12):4173-4185. |
[20] | TRIAS-SANZ R, STAMON G, LOUCHET J. Using colour, texture, and hierarchial segmentation for high-resolution remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(2):156-168. |
[21] | SU Wei, LI Jing, CHEN Yunhao, et al. Textural and local spatial statistics for the object-oriented classification of urban areas using high resolution imagery[J]. International Journal of Remote Sensing, 2008, 29(11):3105-3117. |
[22] | MA Lei, LI Manchun, MA Xiaoxue, et al. A review of supervised object-based land-cover image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130:277-293. |
[23] | BELGIU M, DRAGUT L. Random forest in remote sensing: a review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114:24-31. |
[24] | 杜培军, 阿里木·赛买提. 高分辨率遥感影像分类的多示例集成学习[J]. 遥感学报, 2013, 17(1):77-97. |
DU Peijun, SAMAT Alim. Multiple instance ensemble learning method for high-resolution remote sensing image classification[J]. Journal of Remote Sensing, 2013, 17(1):77-97. | |
[25] | MOUNTRAKIS G, IM J, OGOLE C. Support vector machines in remote sensing: a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(3):247-259. |
[26] | 周培诚, 程塨, 姚西文, 等. 高分辨率遥感影像解译中的机器学习范式[J]. 遥感学报, 2021, 25(1):182-197. |
ZHOU Peicheng, CHENG Gong, YAO Xiwen, et al. Machine learning paradigms in high-resolution remote sensing image interpretation[J]. National Remote Sensing Bulletin, 2021, 25(1):182-197. | |
[27] | YUAN Qiangqiang, SHEN Huanfeng, LI Tongwen, et al. Deep learning in environmental remote sensing: achievements and challenges[J]. Remote Sensing of Environment, 2020, 241:111716. |
[28] | MA Lei, LIU Yu, ZHANG Xueliang, et al. Deep learning in remote sensing applications: a meta-analysis and review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152:166-177. |
[29] | HEYDARI S S, MOUNTRAKIS G. Meta-analysis of deep neural networks in remote sensing: a comparative study of mono-temporal classification to support vector machines[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152:192-210. |
[30] | GUO Mingqiang, LIU Heng, XU Yongyang, et al. Building extraction based on U-net with an attention block and multiple losses[J]. Remote Sensing, 2020, 12(9):1400. |
[31] | XU Yongyang, WU Liang, XIE Zhong, et al. Building extraction in very high resolution remote sensing imagery using deep learning and guided filters[J]. Remote Sensing, 2018, 10(1):144. |
[32] | ALSHEHHI R, MARPU P R, WOON W L, et al. Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130:139-149. |
[33] | LÜ Xianwei, MING Dongping, LU Tingting, et al. A new method for region-based majority voting CNNs for very high resolution image classification[J]. Remote Sensing, 2018, 10(12):1946. |
[34] | 王斌, 陈占龙, 吴亮, 等. 兼顾连通性的U-Net网络高分辨率遥感影像道路提取[J]. 遥感学报, 2020, 24(12):1488-1499. |
WANG Bin, CHEN Zhanlong, WU Liang, et al. Road extraction of high-resolution satellite remote sensing images in U-Net network with consideration of connectivity[J]. National Remote Sensing Bulletin, 2020, 24(12):1488-1499. | |
[35] | FU Gang, LIU Changjun, ZHOU Rong, et al. Classification for high resolution remote sensing imagery using a fully convolutional network[J]. Remote Sensing, 2017, 9(5):498. |
[36] | HU Yunfeng, ZHANG Qianli, ZHANG Yunzhi, et al. A deep convolution neural network method for land cover mapping: a case study of Qinhuangdao, China[J]. Remote Sensing, 2018, 10(12):2053. |
[37] | 陈妮, 应丰, 王静, 等. 基于U-Net的高分辨率遥感图像土地利用信息提取[J]. 遥感技术与应用, 2021, 36(2):285-292. |
CHEN Ni, YING Feng, WANG Jing, et al. Research on land use information extraction based on U-net[J]. Remote Sensing Technology and Application, 2021, 36(2):285-292. | |
[38] | 徐知宇, 周艺, 王世新, 等. 面向GF-2遥感影像的U-Net城市绿地分类[J]. 中国图象图形学报, 2021, 26(3):700-713. |
XU Zhiyu, ZHOU Yi, WANG Shixin, et al. U-Net for urban green space classification in Gaofen-2 remote sensing images[J]. Journal of Image and Graphics, 2021, 26(3):700-713. | |
[39] | 蔡博文, 王树根, 王磊, 等. 基于深度学习模型的城市高分辨率遥感影像不透水面提取[J]. 地球信息科学学报, 2019, 21(9):1420-1429. |
CAI Bowen, WANG Shugen, WANG Lei, et al. Extraction of urban impervious surface from high-resolution remote sensing imagery based on deep learning[J]. Journal of Geo-Information Science, 2019, 21(9):1420-1429. | |
[40] | HUANG Fenghua, YU Ying, FENG Tinghao. Automatic extraction of impervious surfaces from high resolution remote sensing images based on deep learning[J].Journal of Visual Communication and Image Representation, 2019, 58:453-461. |
[41] | FU Yongyong, LIU Kunkun, SHEN Zhangquan, et al. Mapping impervious surfaces in town-rural transition belts using China's GF-2 imagery and object-based deep CNNs[J]. Remote Sensing, 2019, 11(3):280. |
[42] | 孙根云, 王鑫, 安娜, 等. 基于多源遥感的大尺度高分辨率不透水面深度学习提取方法[J]. 测绘学报, 2023, 52(2):272-282.DOI: 10.11947/j.AGCS.2023.20210546. |
SUN Genyun, WANG Xin, AN Na, et al. A method for large-scale and high-resolution impervious surface extraction based on multi-source remote sensing and deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2):272-282.DOI: 10.11947/j.AGCS.2023.20210546. | |
[43] | CHANG Ruichun, HOU Dong, CHEN Zhe, et al. Automatic extraction of urban impervious surface based on SAH-unet[J]. Remote Sensing, 2023, 15(4):1042. |
[44] | SHAO Zhenfeng, CHENG Tao, FU Huyan, et al. Emerging issues in mapping urban impervious surfaces using high-resolution remote sensing images[J]. Remote Sensing, 2023, 15(10):2562. |
[45] | 冯权泷, 陈泊安, 李国庆, 等. 遥感影像样本数据集研究综述[J]. 遥感学报, 2022, 26(4):589-605. |
FENG Quanlong, CHEN Boan, LI Guoqing, et al. A review for sample datasets of remote sensing imagery[J]. National Remote Sensing Bulletin, 2022, 26(4):589-605. | |
[46] | CHENG Gong, LI Zhenpeng, HAN Junwei, et al. Exploring hierarchical convolutional features for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11):6712-6722. |
[47] | 许夙晖, 慕晓冬, 赵鹏, 等. 利用多尺度特征与深度网络对遥感影像进行场景分类[J]. 测绘学报, 2016, 45(7):834-840.DOI: 10.11947/J.AGCS.2016.20150623. |
XU Suhui, MU Xiaodong, ZHAO Peng, et al. Scene classification of remote sensing image based on multi-scale feature and deep neural network[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(7):834-840.DOI: 10.11947/J.AGCS.2016.20150623. | |
[48] | 余东行, 张保明, 赵传, 等. 联合卷积神经网络与集成学习的遥感影像场景分类[J]. 遥感学报, 2020, 24(6):717-727. |
YU Donghang, ZHANG Baoming, ZHAO Chuan, et al. Scene classification of remote sensing image using ensemble convolutional neural network[J]. Journal of Remote Sensing, 2020, 24(6):717-727. | |
[49] | LI Ruirui, LIU Wenjie, YANG Lei, et al. DeepUNet: a deep fully convolutional network for pixel-level sea-land segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11):3954-3962. |
[50] | XU W, DENG X, GUO S, et al. High-resolution U-net: preserving image details for cultivated land extraction[J]. Sensors (Basel), 2020, 20(15):E4064. |
[51] | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of 2005 International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin: Springer, 2005: 234-241. |
[1] | Yating LIU, Chuanfa CHEN. Landslide susceptibility evaluation method considering spatial heterogeneity and feature selection [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1417-1428. |
[2] | HU Xin, WANG Xinyu, ZHONG Yanfei. Adaptive context aggregation network for H2 remote sensing imagery classification [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1175-1186. |
[3] | CHENG Jiehai, HUANG Zhongyi, WANG Jianru, HE Shi. The automatic determination method of the optimal segmentation result of high-spatial resolution remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 658-667. |
[4] | HONG Liang, FENG Yafei, PENG Shuangyun, CHU Sensen. Classification of high spatial resolution remote sensing imagery based on object-oriented multi-scale weighted sparse representation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 224-237. |
[5] | YANG Qiulian, LIU Yanfei, DING Lele, MENG Fanxiao. High spatial resolution imagery scene classification based on semi-supervised CNNs [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 930-938. |
[6] | HUANG Liang, YAO Bingxiu, CHEN Pengdi, YANG Xing, FU Bihuan. Superpixel segmentation method of high-resolution remote sensing image based on fuzzy clustering [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(5): 589-597. |
[7] | GU Yu, XU Ying, GUO Baofeng. Hyperspectral Image Classification by Combination of Spatial-spectral Features and Ensemble Extreme Learning Machines [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9): 1238-1249. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||