Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (2): 224-237.doi: 10.11947/j.AGCS.2022.20190290
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
HONG Liang1,2,3, FENG Yafei4, PENG Shuangyun1,2,3, CHU Sensen1,5
Received:
2019-08-02
Revised:
2021-09-30
Published:
2022-02-28
Supported by:
CLC Number:
HONG Liang, FENG Yafei, PENG Shuangyun, CHU Sensen. Classification of high spatial resolution remote sensing imagery based on object-oriented multi-scale weighted sparse representation[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 224-237.
[1] 赵贝, 钟燕飞, 张良培. 高空间分辨率遥感影像的多智能体分割方法研究[J]. 测绘学报, 2013, 42(1):108-115, 122. ZHAO Bei, ZHONG Yanfei, ZHANG Liangpei. High spatial resolution remote sensing image segmentation based on multi-agent theory[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(1):108-115, 122. [2] REIS S, TAŞDEMIR K. Identification of hazelnut fields using spectral and Gabor textural features[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(5):652-661. [3] TUIA D, PACIFICI F, KANEVSKI M, et al. Classification of very high spatial resolution imagery using mathematical morphology and support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11):3866-3879. [4] LÜ Z Y, ZHANG Penglin, BENEDIKTSSON J A, et al. Morphological profiles based on differently shaped structuring elements for classification of images with very high spatial resolution[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(12):4644-4652. [5] HUANG Xin, HAN Xiaopeng, ZHANG Liangpei, et al. Generalized differential morphological profiles for remote sensing image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(4):1736-1751. [6] ZHAO Yindi, ZHANG Liangpei, LI Pingxiang, et al. Classification of high spatial resolution imagery using improved Gaussian Markov random-field-based texture features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(5):1458-1468. [7] WANG Leiguang, DAI Qinling, XU Qizhi, et al. Constructing hierarchical segmentation tree for feature extraction and land cover classification of high resolution MS imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(5):1946-1961. [8] ZHANG Liangpei, HUANG Xin, HUANG Bo, et al. A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10):2950-2961. [9] ZHANG Penglin, LV Z, SHI Wenzhong. Object-based spatial feature for classification of very high resolution remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6):1572-1576. [10] HAN Y, KIM H, CHOI J, et al. A shape-size index extraction for classification of high resolution multispectral satellite images[J]. International Journal of Remote Sensing, 2012, 33(6):1682-1700. [11] PEDERGNANA M, MARPU P R, MURA M D, et al. A novel technique for optimal feature selection in attribute profiles based on genetic algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6):3514-3528. [12] CHEN Xi, QI Jinzi, CHEN Yushi, et al. Adaptive semi-supervised feature selection without graph construction for very-high-resolution remote sensing images[J]. Journal of Applied Remote Sensing, 2016, 10(2):025002. [13] MOUNTRAKIS G, IM J, OGOLE C. Support vector machines in remote sensing:a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(3):247-259. [14] IMMITZER M, ATZBERGER C, KOUKAL T. Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data[J]. Remote Sensing, 2012, 4(9):2661-2693. [15] BELGIU M, DRÄGUŢ L. Random forest in remote sensing:a review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114:24-31. [16] ZHONG Yanfei, ZHAO Ji, ZHANG Liangpei. A hybrid object-oriented conditional random field classification framework for high spatial resolution remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11):7023-7037. [17] SHENG Guofeng, YANG Wen, XU Tao, et al. High-resolution satellite scene classification using a sparse coding based multiple feature combination[J]. International Journal of Remote Sensing, 2012, 33(8):2395-2412. [18] GHAMISI P, MAGGIORI E, LI Shutao, et al. New frontiers in spectral-spatial hyperspectral image classification:the latest advances based on mathematical morphology, Markov random fields, segmentation, sparse representation, and deep learning[J]. IEEE Geoscience and Remote Sensing Magazine, 2018, 6(3):10-43. [19] BENZ U C, HOFMANN P, WILLHAUCK G, et al. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 58(3/4):239-258. [20] MA Lei, LI Manchun, MA Xiaoxue, et al. A review of supervised object-based land-cover image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130:277-293. [21] LI Xiaoxiao, SHAO Guofan. Object-based land-cover mapping with high resolution aerial photography at a County scale in Midwestern USA[J]. Remote Sensing, 2014, 6(11):11372-11390. [22] 王猛, 张新长, 王家耀, 等. 结合随机森林面向对象的森林资源分类[J]. 测绘学报, 2020, 49(2):235-244.DOI:10.11947/j.AGCS.2020.20190272. WANG Meng, ZHANG Xinchang, WANG Jiayao, et al. Forest resource classification based on random forest and object oriented method[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(2):235-244.DOI:10.11947/j.AGCS.2020.20190272. [23] MA Lei, CHENG Liang, LI Manchun, et al. Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 102:14-27. [24] YANG Lingbo, MANSARAY L, HUANG Jingfeng, et al. Optimal segmentation scale parameter, feature subset and classification algorithm for geographic object-based crop recognition using multisource satellite imagery[J]. Remote Sensing, 2019, 11(5):514. [25] WU Tianjun, LUO Jiancheng, ZHOU Yanan, et al. Geo-object-based land cover map update for high-spatial-resolution remote sensing images via change detection and label transfer[J]. Remote Sensing, 2020, 12(1):174. [26] ZHANG Xueliang, XIAO Pengfeng, FENG Xuezhi. Object-specific optimization of hierarchical multiscale segmentations for high-spatial resolution remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159:308-321. [27] ZHU Xiao xiang, TUIA D, MOU Lichao, et al. Deep learning in remote sensing:a comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4):8-36. [28] GONG J Y, JI S P. Photogrammetry and Deep Learning[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1):1-15. [29] SCOTT G J, ENGLAND M R, STARMS W A, et al. Training deep convolutional neural networks for land-cover classification of high-resolution imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(4):549-553. [30] ZHAO Wenzhi, DU Shihong, EMERY W J. Object-based convolutional neural network for high-resolution imagery classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(7):3386-3396. [31] WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2):210-227. [32] CHEN Yi, NASRABADI N M, TRAN T D. Hyperspectral image classification using dictionary-based sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10):3973-3985. [33] ZHANG Hongyan, LI Jiayi, HUANG Yuancheng, et al. A nonlocal weighted joint sparse representation classification method for hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2056-2065. [34] FU Wei, LI Shutao, FANG Leyuan, et al. Hyperspectral image classification via shape-adaptive joint sparse representation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(2):556-567. [35] GAN Le, XIA Junshi, DU Peijun, et al. Dissimilarity-weighted sparse representation for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11):1968-1972. [36] TU Bing, HUANG Siyuan, FANG Leyuan, et al. Hyperspectral image classification via weighted joint nearest neighbor and sparse representation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11):4063-4075. [37] GAN Le, XIA Junshi, DU Peijun, et al. Multiple feature kernel sparse representation classifier for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9):5343-5356. [38] LI Jiayi, ZHANG Hongyan, ZHANG Liangpei. Efficient superpixel-level multitask joint sparse representation for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(10):5338-5351. [39] GAN Le, XIA Junshi, DU Peijun, et al. Class-oriented weighted kernel sparse representation with region-level kernel for hyperspectral imagery classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(4):1118-1130. [40] ZHANG Shuzhen, LI Shutao, FU Wei, et al. Multiscale superpixel-based sparse representation for hyperspectral image classification[J]. Remote Sensing, 2017, 9(2):139. [41] TONG Fei, TONG Hengjian, JIANG Junjun, et al. Multiscale union regions adaptive sparse representation for hyperspectral image classification[J]. Remote Sensing, 2017, 9(9):872. [42] FANG Leyuan, LI Shutao, DUAN Wuhui, et al. Classification of hyperspectral images by exploiting spectral-spatial information of superpixel via multiple kernels[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12):6663-6674. [43] SARANATHAN A M, PARENTE M. Uniformity-based superpixel segmentation of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3):1419-1430. [44] ZHANG Yun. Optimisation of building detection in satellite images by combining multispectral classification and texture filtering[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(1):50-60. [45] MALLAT S G. A theory for multiresolution signal decomposition:the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7):674-693. [46] OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):971-987. [47] HUANG Xin, ZHANG Liangpei, LI Pingxiang. Classification and extraction of spatial features in urban areas using high-resolution multispectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(2):260-264. [48] DALLA MURA M, ATLI BENEDIKTSSON J, WASKE B, et al. Extended profiles with morphological attribute filters for the analysis of hyperspectral data[J]. International Journal of Remote Sensing, 2010, 31(22):5975-5991. [49] JOHNSON B, XIE Zhixiao. Unsupervised image segmentation evaluation and refinement using a multi-scale approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(4):473-483. [50] FANG Leyuan, LI Shutao, KANG Xudong, et al. Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(12):7738-7749. [51] KEERTHI S S, LIN C J. Asymptotic behaviors of support vector machines with Gaussian kernel[J]. Neural Computation, 2003, 15(7):1667-1689. [52] HUANG Xin, ZHANG Liangpei. Comparison of vector stacking, multi-SVMs fuzzy output, and multi-SVMs voting methods for multiscale VHR urban mapping[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(2):261-265. [53] CHEN Yushi, LIN Zhouhan, ZHAO Xing, et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2094-2107. [54] 张良培, 李家艺. 高光谱图像稀疏信息处理综述与展望[J]. 遥感学报, 2016, 20(5):1091-1101. ZHANG Liangpei, LI Jiayi. Development and prospect of sparse representation-based hyperspectral image processing and analysis[J]. Journal of Remote Sensing, 2016, 20(5):1091-1101. [55] DRǍGUT L, TIEDE D, LEVICK S R. ESP:a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data[J]. International Journal of Geographical Information Science, 2010, 24(6):859-871. [56] ROBNIK-ŠIKONJA M, KONONENKO I. Theoretical and empirical analysis of ReliefF and RReliefF[J]. Machine Learning, 2003, 53(1):23-69. |
[1] | WANG Meng, ZHANG Xinchang, WANG Jiayao, SUN Ying, JIAN Ge, PAN Cuihong. Forest resource classification based on random forest and object oriented method [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(2): 235-244. |
[2] | FAN Dazhao, DONG Yang, ZHANG Yongsheng. Satellite Image Matching Method Based on Deep Convolution Neural Network [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 844-853. |
[3] | HE Handong, HU Di, LÜ Guonian, LI Anbo, LI Junli. GIS Data Modeling of a Regional Geological Structure by Integrating Geometric and Semantic Expressions [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(8): 1058-1068. |
[4] | LIU Ying, TAO Chao, YAN Pei, ZOU Zhengrong. Graph Cut Energy Driven Earthquake-damaged Building Detection from High-resolution Remote Sensing Images [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(7): 910-917. |
[5] | LI Yinchao, LI Jiansong. A Mixed Land Cover Spatio-temporal Data Model Based on Object-oriented and Snapshot [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(7): 858-865. |
[6] | LI Hui, TANG Yunwei, LIU Qingjie, DING Haifeng, JING Linhai. An Improved Algorithm Based on Minimum Spanning Tree for Multi-scale Segmentation of Remote Sensing Imagery [J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(7): 791-796. |
[7] | WANG Huixian, JIN Huijia, WANG Jiaolong, JIANG Wanshou. Optimization Approach for Multi-scale Segmentation of Remotely Sensed Imagery under k-means Clustering Guidance [J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(5): 526-532. |
[8] | FENG Wenqing, ZHANG Yongjun. Object-oriented Change Detection for Remote Sensing Images Based on Multi-scale Fusion [J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(10): 1142-1151. |
[9] | WU Tianjun LUO Jiancheng XIA Liegang YANG Haiping SHEN Zhanfeng HU Xiaodong. An Automatic Sample Collection Method for Object-oriented Classification of Remotely Sensed Imageries Based on Transfer Learning [J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9): 908-916. |
[10] | LI Liang SHU Ning WANG Kai GONG Yan. Change Detection Experimental Study Based on Spectral and Texture Features [J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9): 945-953. |
[11] | . Research and Establishment of China’s Digital Land Boundary [J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(6): 791-796. |
[12] | . UNMIXING OF HYPERSPECTRAL MIXTURE PIXELS BASED ON SPECTRAL MULTISCALE SEGEMETED FEATURES [J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(2): 205-212. |
[13] | . Object-Oriented Classification of High Resolution Imagery Combining Support Vector Machine with Granular Computing [J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(2): 135-141. |
[14] | . Urban Building Extraction from VHR Multi-spectral Images Using Object-based Classification [J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(6): 618-623. |
[15] | . Hierarchical Urban Building Extraction from High-Resolution Remote-Sensing Imagery Based on Object-Oriented [J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(1): 0-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||