[1] 张海波, 汪长城, 朱建军, 等. 利用ESAR极化数据的复杂地形区森林地上生物量估算[J]. 测绘学报, 2018, 47(10):1353-1362. DOI:10.11947/j.AGCS.2018.20170120. ZHANG Haibo, WANG Changcheng, ZHU Jianjun, et al. Forest above-ground biomass estimation for rugged terrain by using ESAR polarization data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(10):1353-1362. DOI:10.11947/j.AGCS.2018.20170120. [2] 施拥军. 森林遥感分类技术研究——以浙西北山区为例[D]. 杭州:浙江大学, 2003. SHI Yongjun. Research on technologies of forest classification by remote sensing:a case study of northwest mountainous area in Zhejiang[D]. Hangzhou:Zhejiang University, 2003. [3] 闫飞. 森林资源调查技术与方法研究[D]. 北京:北京林业大学, 2014. YAN Fei. Research of technology and method of forest resource inventory[D]. Beijing:Beijing Forestry University, 2014. [4] ACHARD F, ESTREGUIL C. Forest classification of Southeast Asia using NOAA AVHRR data[J]. Remote Sensing of Environment, 1995, 54(3):198-208. [5] MCDONALD A J, GEMMELL F M, LEWIS P E. Investigation of the utility of spectral vegetation indices for determining information on coniferous forests[J]. Remote Sensing of Environment, 1998, 66(3):250-272. [6] VERSTRETE M M, PINTY B. Designing optimal spectral indexes for remote sensing applications[J]. IEEE Transactions on Geoscience & Remote Sensing, 1996, 34(5):1254-1265. [7] MAYAUX P, DE GRANDI G, MALINGREAU J P. Central African forest cover revisited:a multisatellite analysis[J]. Remote Sensing of Environment, 2000, 71(2):183-196. [8] MARTIN M E, NEWMAN S D, ABER J D, et al. Determining forest species composition using high spectral resolution remote sensing data[J]. Remote Sensing of Environment, 1998, 65(3):249-254. [9] PASQUARELLA V J, HOLDEN C E, WOODCOCK C E. Improved mapping of forest type using spectral-temporal Landsat features[J]. Remote Sensing of Environment, 2018, 210:193-207. [10] 韩涛. 用TM资料对祁连山部分地区进行针叶林、灌木林分类研究[J]. 遥感技术与应用, 2002, 17(6):317-321. HAN Tao. Study on classification between coniferous forest and shrubbery based on TM data in the part of QI Lian mountainous area[J]. Remote Sensing Technology and Application, 2002, 17(6):317-321. [11] 严恩萍, 林辉, 莫登奎, 等. 基于ALOS数据的遥感植被分类研究[J]. 中南林业科技大学学报, 2010, 30(11):37-42. YANG Enping, LIN Hui, MO Dengkui, et al. Vegetation classification based on ALOS data[J]. Journal of Central South University of Forestry & Technology, 2010, 30(11):37-42 [12] SANTRA A, MITRA S S. A comparative study of tasselled cap transformation of DMC and ETM+ images and their application in forest classification[J]. Journal of the Indian Society of Remote Sensing, 2014, 42(2):373-381. [13] RICHTER R, REU B, WIRTH C, et al. The use of airborne hyperspectral data for tree species classification in a species-rich central European forest area[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 52:464-474. [14] GHEBREZGABHER M G, YANG Taibao, YANG Xuemei, et al. Extracting and analyzing forest and woodland cover change in Eritrea based on Landsat data using supervised classification[J]. The Egyptian Journal of Remote Sensing and Space Science, 2016, 19(1):37-47. [15] PULETTI N, CHIANUCCI F, CASTALDI C. Use of Sentinel-2 for forest classification in Mediterranean environments[J]. Annals of Silvicultural Research, 2018, 42(1):32-38. [16] CHEN Y, SHI P, FUNG T, et al. Object-oriented classification for urban land cover mapping with ASTER imagery[J]. International Journal of Remote Sensing, 2007, 28(20):4645-4651. [17] 陶超, 谭毅华, 蔡华杰, 等. 面向对象的高分辨率遥感影像城区建筑物分级提取方法[J]. 测绘学报, 2010, 39(1):39-45. TAO Chao, TAN Yihua, CAI Huajie, et al. Object-oriented method of hierarchical urban building extraction from high-resolution remote-sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(1):39-45. [18] SCHIEWE J, TUFTE L, EHLERS M. Potential and problems of multi-scale segmentation methods in remote sensing[J]. GeoBIT/GIS, 2001, 6(1):34-39. [19] 顾海燕, 闫利, 李海涛, 等. 基于随机森林的地理要素面向对象自动解译方法[J]. 武汉大学学报(信息科学版), 2016, 41(2):228-234. GU Haiyan, YAN Li, LI Haitao, et al. An object-based automatic interpretation method for geographic features based on random forest machine learning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2):228-234. [20] BREIMAN L. Random forests[J]. Machine learning, 2001, 45(1):5-32. [21] HE Xianjin, ZHANG Xinchang, XIN Qinchuan. Recognition of building group patterns in topographic maps based on graph partitioning and random forest[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 136:26-40. [22] STUMPF A, KERLE N. Object-oriented mapping of landslides using random forests[J]. Remote Sensing of Environment, 2011, 115(10):2564-2577. [23] PUISSANT A, ROUGIER S, STUMPF A. Object-oriented mapping of urban trees using Random Forest classifiers[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 26:235-245. [24] WATTS J D, LAWRENCE R L. Merging random forest classification with an object-oriented approach for analysis of agricultural lands[C]//Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Beijing:Chinese Society for Geodesy Photogrammetry and Cartography, 2008:579-582. [25] 付春风. 基于GIS的流溪河森林公园景观分类与制图[J]. 华中农业大学学报, 2009, 28(2):233-237. FU Chunfeng. GIS-based forest landscape classification and mapping of Liuxihe National Forest Park[J]. Journal of Huazhong Agricultural University, 2009, 28(2):233-237. [26] 李国元, 胡芬, 张重阳, 等. WorldView-3卫星成像模式介绍及数据质量初步评价[J]. 测绘通报, 2015(S1):11-16. DOI:10.13474/j.cnki.11-2246.2015.0675. LI Guoyuan, HU fen, ZHANG Chongyang, et al. Introduction to imaging mode of WorldView-3 satellite and image quality preliminary evaluation[J]. Bulletin of Surveying and Mapping, 2015(S1):11-16. DOI:10.13474/j.cnki.11-2246.2015.0675. [27] RODRIGUEZ-GALIANO V F, GHIMIRE B, ROGAN J, et al. An assessment of the effectiveness of a random forest classifier for land-cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012(67):93-104. [28] 张志强, 张新长, 辛秦川, 等. 结合像元级和目标级的高分辨率遥感影像建筑物变化检测[J]. 测绘学报, 2018, 47(1):102-112. DOI:10.11947/j.AGCS.2018.20170483. ZHANG Zhiqiang, ZHANG Xinchang, XIN Qinchuan, et al. Combining the pixel-based and object-based methods for building change detection using high-resolution remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(1):102-112. DOI:10.11947/j.AGCS.2018.20170483. [29] 张雯, 刘爱利, 齐威, 等. 基于随机森林的月貌面向对象分类[J]. 遥感信息, 2018, 33(1):93-98. ZHANG Wen, LIU Aili, QI Wei, et al. Lunar terrain object-oriented classification based on random forest[J]. Remote Sensing Information, 2018, 33(1):93-98. [30] BAATZ M, SCHAPE A. Multiresolution segmentation:an optimization approach for high quality multi-scale image segmentation[C]//Angewandte Geographische Informations Verarbeitung. Heidelberg:Wichmann-Verlag, 2000:12-23. [31] 孙坤, 鲁铁定. 顾及多尺度分割参数的FNEA面向对象分类[J]. 测绘通报, 2018(3):43-48. SUN Kun, LU Tieding. Research on FNEA object-oriented classification based on multi-scale partition parameters[J]. Bulletin of Surveying and Mapping, 2018(3):43-48. [32] GENUER R, POGGI J M, TULEAU-MALOT C. Variable selection using random forests[J]. Pattern Recognition Letters, 2010, 31(14):2225-2236. [33] WEISS G M. Mining with rarity:a unifying framework[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1):7-19. [34] STEHMAN S V. Selecting and interpreting measures of thematic classification accuracy[J]. Remote sensing of Environment, 1997, 62(1):77-89. |