[1] 李敏,朱国康,张学武,等. 基于多孔径映射的高光谱异常检测算法[J]. 测绘学报,2016,45(10):1222-1230. DOI:10.11947/J.AGCS.2016.20160119. LI Min,ZHU Guokang,ZHANG Xuewu,et al. An anomaly detector based on multi-aperture mapping for hyperspectral data[J]. Acta Geodaetica et Cartographica Sinica,2016,45(10):1222-1230.DOI:10.11947/J.AGCS.2016.20160119. [2] LU Xiaoqiang,WANG Yulong,YUAN Yuan. Graph-regularized low-rank representation for destriping of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing,2013,51(7):4009-4018. [3] KRUSE F A,BOARDMAN J W,HUNTINGTON J F. Comparison of airborne hyperspectral data and EO-1 hyperion for mineral mapping[J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(6):1388-1400. [4] EISMANN M T, STOCKER A D, NASRABADI N M. Automated hyperspectral cueing for civilian search and rescue[J]. Proceedings of the IEEE,2009,97(6):1031-1055. [5] GUILLEMOT C, LE MEUR O. Image inpainting: overview and recent advances[J]. IEEE Signal Processing Magazine, 2014, 31(1): 127-144. [6] 刘冰,左溪冰,谭熊,等. 高光谱影像分类的深度少样例学习方法[J]. 测绘学报,2020,49(10):1331-1342. DOI: 10.11947/J.AGCS.2020.20190486. LIU Bing,ZUO Xibing,TAN Xiong,et al. A deep few-shot learning algorithm for hyperspectral image classification[J]. Acta Geodaetica et Cartographica Sinica,2020,49(10):1331-1342. DOI:10.11947/J.AGCS.2020.20190486. [7] SIRAVENHA A C, SOUSA D, BISPO A, et al. Evaluating inpainting methods to the satellite images clouds and shadows removing[C]//Proceedings of 2011 Signal Processing, Image Processing and Pattern Recognition.Jeju Island,Korea:SPPR,2011. [8] CHENG Qing,SHEN Huanfeng,ZHANG Liangpei,et al. Missing information reconstruction for single remote sensing images using structure-preserving global optimization[J]. IEEE Signal Processing Letters,2017,24(8):1163-1167. [9] LORENZI L, MELGANI F, MERCIER G. Missing-area reconstruction in multispectral images under a compressive sensing perspective[J]. IEEE Transactions on Geoscience and Remote Sensing,2013,51(7):3998-4008. [10] LIN C H, TSAI P H, LAI Kanghua, et al. Cloud removal from multitemporal satellite images using information cloning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 232-241. [11] LIN C,LAI K,CHEN Z,et al. Patch-based information reconstruction of cloud-contaminated multitemporal images[J]. IEEE Transactions on Geoscience and Remote Sensing,2014,52(1):163-174. [12] CHEN Feng, TANG Lina, QIU Quanyi. Exploitation of CBERS-02B as auxiliary data in recovering the Landsat7 ETM+ SLC-off image[C]//Proceedings of the 18th International Conference on Geoinformatics. Beijing,China: IEEE, 2010. [13] CHENG Qing,SHEN Huanfeng,ZHANG Liangpei,et al. Cloud removal for remotely sensed images by similar pixel replacement guided with a spatio-temporal MRF model[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2014,92:54-68. [14] CHEN Bin, HUANG Bo, CHEN Lifan, et al. Spatially and temporally weighted regression: a novel method to produce continuous cloud-free landsat imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 27-37. [15] 梁栋, 孔颉, 胡根生, 等. 基于支持向量机的遥感影像厚云及云阴影去除[J]. 测绘学报, 2012, 41(2): 225-231, 238. LIANG Dong, KONG Jie, HU Gensheng, et al. The removal of thick cloud and cloud shadow of remote sensing image based on support vector machine[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(2): 225-231, 238. [16] GAO Guoming,GU Yanfeng. Multitemporal Landsat missing data recovery based on tempo-spectral angle model[J]. IEEE Transactions on Geoscience and Remote Sensing,2017,55(7):3656-3668. [17] ZHU Xiaolin,GAO Feng,LIU Desheng,et al. A modified neighborhood similar pixel interpolator approach for removing thick clouds in Landsat images[J]. IEEE Geoscience and Remote Sensing Letters,2012,9(3):521-525. [18] LI Xinghua,SHEN Huanfeng,ZHANG Liangpei,et al. Sparse-based reconstruction of missing information in remote sensing images from spectral/temporal complementary information[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2015,106:1-15. [19] LI Xinghua,SHEN Huanfeng,LI Huifang,et al. Patch matching-based multitemporal group sparse representation for the missing information reconstruction of remote-sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2016,9(8):3629-3641. [20] CAO Ruyin, CHEN Yang, CHEN Jin, et al. Thick cloud removal in Landsat images based on autoregression of Landsat time-series data[J]. Remote Sensing of Environment, 2020, 249: 112001. [21] TANG Zhipeng, ADHIKARI H, PELLIKKA P K E, et al. A method for predicting large-area missing observations in Landsat time series using spectral-temporal metrics[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 99: 102319. [22] TAN Kun, WANG Xue, NIU Chao, et al. Vicarious calibration for the AHSI instrument of Gaofen-5 with reference to the CRCS Dunhuang test site[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 3409-3419. [23] USGS.EO-1 user guide.[2022-02-05].https://www.usgs.gov/media/files/eo-1-user-guide-v-23. [24] SHEN Huanfeng, LI Xinghua, CHENG Qing, et al. Missing information reconstruction of remote sensing data: a technical review[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(3): 61-85. [25] WANG Qunming,TANG Yijie,TONG Xiaohua,et al. Virtual image pair-based spatio-temporal fusion[J]. Remote Sensing of Environment,2020,249:112009. [26] YAN L, ROY D P. Conterminous united states crop field size quantification from multi-temporal Landsat data[J]. Remote Sensing of Environment, 2016, 172: 67-86. [27] ZHU Zhe, WOODCOCK C E. Continuous change detection and classification of land cover using all available Landsat data[J]. Remote Sensing of Environment, 2014, 144: 152-171. [28] SHENG Yongwei,SONG Chunqiao,WANG Jida,et al. Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery[J]. Remote Sensing of Environment,2016,185:129-141. [29] SHEN Huanfeng, HUANG Liwen, ZHANG Liangpei, et al. Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: a 26-year case study of the city of Wuhan in China[J]. Remote Sensing of Environment, 2016, 172: 109-125. [30] LIU Zhaoyan,TANG Lingli,LI Chuanrong,et al. T-S fuzzy remote sensing monitoring model of snail distribution by Landsat 8 and Sentinel 2 data. Journal of Geodesy and Geoinformation Science,2020,3(4):118-125. [31] USGS. Landsat 8 data users handbook.[2022-02-05].https://www.usgs.gov/media/files/landsat-8-data-users- handbook. [32] WANG Qunming,WANG Lanxing,Zhu Xiaolin,et al. Remote sensing image gap filling based on spatial-spectral random forest[J]. Science of Remote Sensing,2022, 5: 100048. [33] BREIMAN L. Random forests[J]. Machine Learning,2001,45:5-32. [34] WANG Zhou, BOVIK A C. A universal image quality index[J]. IEEE Signal Processing Letters, 2002, 9(3): 81-84. |