[1] |
PAJARES G. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs)[J]. Photogrammetric Engineering & Remote Sensing, 2015, 81(4):281-329.
|
[2] |
GUIMARÃES N, PÁDUA L, MARQUES P, et al. Forestry remote sensing from unmanned aerial vehicles:a review focusing on the data, processing and potentialities[J]. Remote Sensing, 2020, 12(6):1046.
|
[3] |
HRISTOV G, KINANEVA D, GEORGIEV G, et al. An overview of the use of unmanned aerial vehicles for precision agriculture[C]//Proceeding of 2020 International Conference on Biomedical Innovations and Applications (BIA). Varna, Bulgaria:IEEE, 2020:137-140.
|
[4] |
MATESE A. Editorial for the special issue "forestry applications of unmanned aerial vehicles (UAVs)"[J]. Forests, 2020, 11(4):406.
|
[5] |
GIBRIL M B A, KALANTAR B, AL-RUZOUQ R, et al. Mapping heterogeneous urban landscapes from the fusion of digital surface model and unmanned aerial vehicle-based images using adaptive multiscale image segmentation and classification[J]. Remote Sensing, 2020, 12(7):1081.
|
[6] |
张建廷, 张立民. 结合光谱和纹理的高分辨率遥感图像分水岭分割[J]. 武汉大学学报(信息科学版), 2017, 42(4):449-455, 467. ZHANG Jianting, ZHANG Limin. A watershed algorithm combining spectral and texture information for high resolution remote sensing image segmentation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4):449-455, 467.
|
[7] |
呙维, 彭旭, 刘异, 等. 边缘约束下的分形网络分割算法[J]. 武汉大学学报(信息科学版), 2019, 44(11):1693-1699. GUO Wei, PENG Xu, LIU Yi, et al. Edge restricted fractal net evolution approach[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11):1693-1699.
|
[8] |
姜枫, 顾庆, 郝慧珍, 等. 基于内容的图像分割方法综述[J]. 软件学报, 2017, 28(1):160-183. JIANG Feng, GU Qing, HAO Huizhen, et al. Survey on content-based image segmentation methods[J]. Journal of Software, 2017, 28(1):160-183.
|
[9] |
GWET D L L, OTESTEANU M, LIBOUGA I O, et al. A review on image segmentation techniques and performance measures[J]. International Journal of Computer and Information Engineering, 2018, 12(12):1107-1117.
|
[10] |
NAZ S, MAJEED H, IRSHAD H. Image segmentation using fuzzy clustering:a survey[C]//proceedings of the 6th International Conference on Emerging Technologies (ICET). Islamabad, Pakistan:IEEE, 2010:181-186.
|
[11] |
王慧贤, 靳惠佳, 王娇龙, 等. k均值聚类引导的遥感影像多尺度分割优化方法[J]. 测绘学报, 2015, 44(5):526-532.DOI:10.11947/j.AGCS.2015.20130497. WANG Huixian, JIN Huijia, WANG Jiaolong, et al. Optimization approach for multi-scale segmentation of remotely sensed imagery under k-means clustering guidance[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(5):526-532.DOI:10.11947/j.AGCS.2015.20130497.
|
[12] |
YU Li.Vehicle extraction using histogram and genetic algorithm based fuzzy image segmentation from high resolution UAV aerial imagery[J]. ISPRS, 2008, B3:529.
|
[13] |
HUANG C L, CHEN J J, CHEN C J, et al. Geological segmentation on UAV aerial image using shape-based LSM with dominant color[C]//Proceedings of the 30th International Conference on Advanced Information Networking and Applications Workshops (WAINA). Crans-Montana, Switzerland:IEEE, 2016:928-933.
|
[14] |
ZHONG Tingyu, LIU Wenping, LUO Youqing, et al. A new type-2 fuzzy algorithm for unmanned aerial vehicle image segmentation[J]. International Journal of Multimedia and Ubiquitous Engineering, 2017, 12(5):75-90.
|
[15] |
LIU Guoying, ZHANG Yun, WANG Aimin. Incorporating adaptive local information into fuzzy clustering for image segmentation[J]. IEEE Transactions on Image Processing, 2015, 24(11):3990-4000.
|
[16] |
LEI Tao, JIA Xiaohong, ZHANG Yanning, et al. Superpixel-based fast fuzzy C-means clustering for color image segmentation[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(9):1753-1766.
|
[17] |
LEI Tao, JIA Xiaohong, LIU Tongliang, et al. Adaptive morphological reconstruction for seeded image segmentation[J]. IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society, 2019, 28(11):5510-5523.
|
[18] |
WU Chong, ZHANG Le, ZHANG Houwang, et al. Improved superpixel-based fast fuzzy C-means clustering for image segmentation[C]//Proceedings of 2019 IEEE International Conference on Image Processing. Taipei, Taiwan, China:IEEE, 2019:1455-1459.
|
[19] |
ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282.
|
[20] |
黄亮, 姚丙秀, 陈朋弟, 等. 高分辨率遥感影像超像素的模糊聚类分割法[J]. 测绘学报, 2020, 49(5):589-597.DOI:10.11947/j.AGCS.2020.20190135. HUANG Liang, YAO Bingxiu, CHEN Pengdi, et al. Superpixel segmentation method of high-resolution remote sensing image based on fuzzy clustering[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(5):589-597. DOI:10.11947/j.AGCS.2020.20190135.
|
[21] |
HU Zhongwen, ZOU Qin, LI Qingquan. Watershed superpixel[C]//Proceeding of 2015 IEEE International Conference on Image Processing. Quebec City, QC, Canada:IEEE, 2015:349-353.
|
[22] |
NEUBERT P, PROTZEL P. Compact watershed and preemptive SLIC:on improving trade-offs of superpixel segmentation algorithms[C]//Proceeding of the 22nd International Conference on Pattern Recognition. Stockholm, Sweden:IEEE, 2014:996-1001.
|
[23] |
CHEN Jiansheng, LI Zhengqin, HUANG Bo. Linear spectral clustering superpixel[J]. IEEE Transactions on Image Processing, 2017, 26(7):3317-3330.
|
[24] |
YUAN Ye, ZHU Zhiliang, YU Hai, et al. Watershed-based superpixels with global and local boundary marching[J]. IEEE Transactions on Image Processing, 2020, 29:7375-7388.
|
[25] |
LEI Tao, LIU Peng, JIA Xiaohong, et al. Automatic fuzzy clustering framework for image segmentation[J]. IEEE Transactions on Fuzzy Systems, 2019, 28(9):2078-2092.
|
[26] |
RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191):1492-1496.
|
[27] |
ZHU Ye, TING Kai ming, CARMAN M J. Density-ratio based clustering for discovering clusters with varying densities[J]. Pattern Recognition, 2016, 60:983-997.
|
[28] |
SZILAGYI L, BENYO Z, SZILAGYI S M, et al. MR brain image segmentation using an enhanced fuzzy C-means algorithm[C]//Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Cancun, Mexico:IEEE, 2003:724-726.
|
[29] |
CHATZIS S P, VARVARIGOU T A. A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation[J]. IEEE Transactions on Fuzzy Systems, 2008, 16(5):1351-1361.
|
[30] |
JIA Xiaohong, LEI Tao, DU Xiaogang, et al. Robust self-sparse fuzzy clustering for image segmentation[J]. IEEE Access, 2020, 8:146182-146195.
|
[31] |
LIN Wenjie, LI Yu, ZHAO Quanhua. High-resolution remote sensing image segmentation using minimum spanning tree tessellation and RHMRF-FCM algorithm[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1):52-63.
|