[1] |
眭海刚, 冯文卿, 李文卓,等. 多时相遥感影像变化检测方法综述[J]. 武汉大学学报(信息科学版),2018, 43(12):1885-1898. SUI Haigang, FENG Wenqing, LI Wenzhuo, et al. Review of change detection methods for multi-temporal remote sensing imagery[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1885-1898.
|
[2] |
TEWKESBURY A P, COMBER A J, TATE N J, et al. A critical synthesis of remotely sensed optical image change detection techniques[J]. Remote Sensing of Environment, 2015, 160:1-14.
|
[3] |
钟家强,王润生.基于自适应参数估计的多时相遥感图像变化检测[J]. 测绘学报, 2005, 34(4):331-336. ZHONG Jiaqiang, WANG Runsheng. Multitemporal remote sensing image change detection based on adaptive parameter estimation[J]. Acta Geodaetica et Cartographica Sinica, 2005, 34(4):331-336.
|
[4] |
黄世奇,刘代志,胡明星,等. 基于小波变换的多时相SAR图像变化检测技术[J]. 测绘学报, 2010, 39(2):180-186. HUANG Shiqi, LIU Daizhi, HU Mingxing, et al. Multi-temporal SAR image change detection technique based on wavelet transform[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(2):180-186.
|
[5] |
BENEDEK C, SZIRANYI T. Change detection in optical aerial images by a multilayer conditional mixed Markov model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(10):3416-3430.
|
[6] |
ZHAO Jiaojiao, GONG Maoguo, LIU Jia, et al. Deep learning to classify difference image for image change detection[C]//Proceedings of 2014 International Joint Conference on Neural Networks (IJCNN). Beijing, China:IEEE, 2014:411-417.
|
[7] |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651.
|
[8] |
ZHAN Yang, FU Kun, YAN Menglong, et al. Change detection based on deep Siamese convolutional network for optical aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10):1845-1849.
|
[9] |
ALCANTARILLA P F, STENT S, ROS G, et al. Street-view change detection with deconvolutional networks[J]. Autonomous Robots, 2018, 42(7):1301-1322.
|
[10] |
PAPADOMANOLAKI M, VERMA S, VAKALOPOULOU M, et al. Detecting urban changes with recurrent neural networks from multitemporal sentinel-2 data[C]//Proceedings of 2019 International Geoscience and Remote Sensing Symposium. Yokohama, Japan:IEEE, 2019:214-217.
|
[11] |
RONNEBERGER O, FISCHER P, BROX T. U-net:Convolutional networks for biomedical image segmentation[C]//Proceedings of 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham, Germany:Springer, 2015:234-241.
|
[12] |
PENG Daifeng, ZHANG Yongjun, GUAN Haiyan. End-to-end change detection for high resolution satellite images using improved UNet++[J]. Remote Sensing, 2019, 11(11):1382.
|
[13] |
ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++:a nested U-net architecture for medical image segmentation[J]. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 2018, 11045:3-11.
|
[14] |
MOU Lichao, BRUZZONE L, ZHU Xiao xiang. Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2):924-935.
|
[15] |
CAYE DAUDT R, LE SAUX B, BOULCH A. Fully convolutional Siamese networks for change detection[C]//Proceedings of the 25th IEEE International Conference on Image Processing. Athens, Greece:IEEE, 2018:4063-4067.
|
[16] |
CHEN Jie, YUAN Ziyang, PENG Jian, et al. DASNet:dual attentive fully convolutional Siamese networks for change detection in high-resolution satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14:1194-1206.
|
[17] |
ZHANG Mengya, XU Guangluan, CHEN Keming, et al. Triplet-based semantic relation learning for aerial remote sensing image change detection[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2):266-270.
|
[18] |
ZHANG Chenxiao, YUE Peng, TAPETE D, et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166:183-200.
|
[19] |
CHEN Hao, SHI Zhenwei. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10):1662.
|
[20] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA:IEEE, 2017:936-944.
|
[21] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA:IEEE, 2016:770-778.
|
[22] |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL].[2021-01-22] https://arxiv.org/abs/1706.05587.
|
[23] |
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]//Proceedings of 2016 International Conference on Learning Representations.[S.l.]:ICLR,2016.
|
[24] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
|
[25] |
LEBEDEV M A, VIZILTER Y V, VYGOLOV O V, et al. Change detection in remote sensing images using conditional adversarial networks[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, 42(2):1428-1441.
|