Acta Geodaetica et Cartographica Sinica ›› 2019, Vol. 48 ›› Issue (10): 1266-1274.doi: 10.11947/j.AGCS.2019.20180398
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
YAO Qunli1,2, HU Xian1,2, Lei Hong1
Received:2018-08-26
Revised:2019-05-05
Online:2019-10-20
Published:2019-10-24
Supported by:CLC Number:
YAO Qunli, HU Xian, Lei Hong. Aircraft detection in remote sensing imagery with multi-scale feature fusion convolutional neural networks[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10): 1266-1274.
| [1] | CHENG Gong, ZHOU Peicheng, HAN Junwei. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):7405-7415. |
| [2] | HAN Junwei, ZHANG Dingwen, CHENG Gong, et al. Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6):3325-3337. |
| [3] | CHENG Gong, HAN Junwei, ZHOU Peicheng, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98(12):119-132. |
| [4] | HE Chu, TU Mingxia, XIONG Dehui, et al. Adaptive component selection-based discriminative model for object detection in high-resolution SAR imagery[J]. ISPRS International Journal of Geo-Information, 2018, 7(2):72. |
| [5] | DIAO Wenhui, SUN Xian, ZHENG Xinwei, et al. Efficient saliency-based object detection in remote sensing images using deep belief networks[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2):137-141. |
| [6] | DU Bo, ZHANG Yuxiang, ZHANG Liangpei, et al. Beyond the sparsity-based target detector:a hybrid sparsity and statistics-based detector for hyperspectral images[J]. IEEE Transactions on Image Processing, 2016, 25(11):5345-5357. |
| [7] | LI Xuelong, MOU Lichao, LU Xiaoqiang. Scene parsing from an MAP perspective[J]. IEEE Transactions on Cybernetics, 2015, 45(9):1876-1886. |
| [8] | ZHANG Libao, ZHANG Yingying. Airport detection and aircraft recognition based on two-layer saliency model in high spatial resolution remote-sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(4):1511-1524. |
| [9] | REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada:ACM, 2015:91-99. |
| [10] | DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN:object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain:ACM, 2016:379-387. |
| [11] | REDMON J, FARHADI A. YOLO9000:better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017:6517-6525. |
| [12] | LIU Wei, ANGUELOV D, ERHAN D, et al. SSD:single shot MultiBox detector[C]//Proceedings of the 14th European Conference On Computer Vision. Amsterdam, The Netherlands:Springer, 2016:21-37. |
| [13] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017:936-944. |
| [14] | HAN Xiaobing, ZHONG Yanfei, ZHANG Liangpei. An efficient and robust integrated geospatial object detection framework for high spatial resolution remote sensing imagery[J]. Remote Sensing, 2017, 9(7):666. |
| [15] | CAI Bowen, JIANG Zhiguo, ZHANG Haopeng, et al. Airport detection using end-to-end convolutional neural network with hard example mining[J]. Remote Sensing, 2017, 9(11):1198. |
| [16] | GUO Wei, YANG Wen, ZHANG Haijian, et al. Geospatial object detection in high resolution satellite images based on multi-scale convolutional neural network[J]. Remote Sensing, 2018, 10(1):131. |
| [17] | 邓志鹏, 孙浩, 雷琳, 等. 基于多尺度形变特征卷积网络的高分辨率遥感影像目标检测[J]. 测绘学报, 2018, 47(9):1216-1227. DOI:10.11947/j.AGCS.2018.20170595. DENG Zhipeng, SUN Hao, LEI Lin, et al. Object detection in remote sensing imagery with multi-scale deformable convolutional networks[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9):1216-1227. DOI:10.11947/j.AGCS.2018.20170595. |
| [18] | CHEN Zhong, ZHANG Ting, OUYANG Chao. End-to-end airplane detection using transfer learning in remote sensing images[J]. Remote Sensing, 2018, 10(1):139. |
| [19] | SHEN Zhiqiang, LIU Zhuang, LI Jianguo, et al. DSOD:learning deeply supervised object detectors from scratch[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy:IEEE, 2017:1937-1945. |
| [20] | BELL S, ZITNICK C L, BALA K, et al. Inside-outside net:detecting objects in context with skip pooling and recurrent neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016:2874-2883. |
| [21] | KONG Tao, SUN Fuchun, YAO Anbang, et al. RON:reverse connection with objectness prior networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017:5244-5252. |
| [22] | ZHU Haigang, CHEN Xiaogang, DAI Weiqun, et al. Orientation robust object detection in aerial images using deep convolutional neural network[C]//Proceedings of 2015 IEEE International Conference on Image Processing. Quebec City:IEEE, 2015:3735-3739. |
| [23] | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston:IEEE, 2015:3431-3440. |
| [24] | 梁华, 宋玉龙, 钱锋等. 基于深度学习的航空对地小目标检测[J]. 液晶与显示, 2018, 33(9):793-800. LIANG Hua, SONG Yulong, QIAN Feng, et al. Detection of small target in aerial photography based on deep learning[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(9):793-800. |
| [25] | XIA Guisong, BAI Xiang, DING Jian, et al. DOTA:a large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018:3974-3983. |
| [1] | Shunping JI, Jin LIU, Jian GAO, Jianya GONG. An intelligent 3D reconstruction framework via deep learning based multi-view image matching [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1633-1646. |
| [2] | Wenjun HUANG, Qun SUN, Qing XU, Long FAN, Anzhu YU, Fubing ZHANG. A global coastal DEM super-resolution reconstruction method integrating frequency-domain features and topographic priors [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1518-1531. |
| [3] | Yakun XIE, Yaoji ZHAO, Jiaxing TU, Ruifeng XIA, Dejun FENG, Suning LIU, Hongyu CHEN, Jun ZHU. Edge and global features integrated network for salient object detection in optical remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1265-1279. |
| [4] | Jie WAN, Zhong XIE, Yongyang XU, Liufeng TAO. A U-shaped graph convolution network method for semantic segmentation of vehicle LiDAR point clouds towards urban road scenes [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1280-1293. |
| [5] | Zibo DONG, Jingxue WANG, Lijing BU, Lin FANG, Zhenghui XU. MAFNet: building extraction method from remote sensing images based on multi-scale atrous fusion network [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1094-1106. |
| [6] | Chao WANG, Tianyu CHEN, Tong ZHANG, Tanvir AHMED, Liqiang JI, Tao XIE, Jiajun YANG, Shuai WANG. Multi-sensor optical remote sensing images change detection based on global differential enhancement module and balance penalty loss [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 873-887. |
| [7] | Yiming ZHAO, Kelin HU, Kelong TU, Yaxian QING, Chao YANG, Kunlun QI, Huayi WU. Multi-label scene classification method based on fusion of SAR and optical remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 911-923. |
| [8] | Yungang CAO, Peng YANG, Jiangbo GONG, Gao ZHU, Xingyu SHEN. A road extraction method integrating spatial-relation enhancement and heterogeneous feature fusion [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2219-2232. |
| [9] | Zhaoyang HOU, Haowen YAN, Liming ZHANG, Rongjuan MA, Ruitao QU. Zero-watermark copyright protection method for remote sensing images based on coupled neural P system and blockchain [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2247-2261. |
| [10] | Liangxiong GONG, Xinghua LI, Yuanming CHENG, Xingyou ZHAO, Renping XIE, Honggen WANG. A lightweight remote sensing images change detection network utilizing spatio-temporal difference enhancement and adaptive feature fusion [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 136-153. |
| [11] | Jialing LI, Ji QI, Weipeng LU, Chao TAO. Self-supervised learning based urban functional zone classification by integrating optical remote sensing image-OSM data [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 154-164. |
| [12] | Jianbo TANG, Zhiyuan HU, Ju PENG, Heyan XIA, Junjie DING, Yuyu ZHANG, Xiaoming MEI. A road intersection recognition method in crowdsourced trajectory data by fusing visual features and motion features [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 182-193. |
| [13] | Fubing ZHANG, Qun SUN, Jingzhen MA, Shijie SUN, Bowei WEN. An intelligent classification method for building shape based on fusion of global and local features [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(9): 1842-1852. |
| [14] | Xin YAN, Li SHEN, Junjie PAN, Yanshuai DAI, Jicheng WANG, Xiaoli ZHENG, Zhi-lin LI. Weakly supervised building change detection integrating multi-scale feature fusion and spatial refinement for high resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1586-1597. |
| [15] | Zhiwei XIE, Shuaizhi ZHAI, Fengyuan ZHANG, Min CHEN, Lishuang SUN. Object-oriented high-resolution image classification using inductive graph neural networks [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1610-1623. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||