Acta Geodaetica et Cartographica Sinica ›› 2019, Vol. 48 ›› Issue (10): 1275-1284.doi: 10.11947/j.AGCS.2019.20180431
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
CHEN Ding, WAN Gang, LI Ke
Received:2018-09-13
Revised:2019-02-27
Online:2019-10-20
Published:2019-10-24
Supported by:CLC Number:
CHEN Ding, WAN Gang, LI Ke. Object detection in optical remote sensing images based on combination of multi-layer feature and context information[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10): 1275-1284.
| [1] | 温奇, 李苓苓, 刘庆杰, 等. 基于视觉显著性和图分割的高分辨率遥感影像中人工目标区域提取[J]. 测绘学报, 2013, 42(6):831-837. WEN Qi, LI Lingling, LIU Qingjie, et al. A man-made object area extraction method based on visual saliency detection and graph-cut segmentation for high resolution remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(6):831-837. |
| [2] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH:IEEE, 2014:580-587. |
| [3] | GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago:IEEE, 2015:1440-1448. |
| [4] | REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2015:91-99. |
| [5] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV:IEEE, 2016:779-788. |
| [6] | LIU Wei, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam:Springer, 2016:21-37. |
| [7] | EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The Pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338. |
| [8] | CHENG Gong, HAN Junwei, ZHOU Peicheng, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98(12):119-132. |
| [9] | 伍广明, 陈奇, SHIBASAKI R, 等. 基于U形卷积神经网络的航空影像建筑物检测[J]. 测绘学报, 2018, 47(6):864-872. DOI:10.11947/j.AGCS.2018.20170651. WU Guangming, CHEN Qi, SHIBASAKI R, et al. High precision building detection from aerial imagery using a U-Net like convolutional architecture[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):864-872. DOI:10.11947/j.AGCS.2018.20170651. |
| [10] | 戴玉超, 张静, PORIKLI F, 等. 深度残差网络的多光谱遥感图像显著目标检测[J]. 测绘学报, 47(6):873-881. DOI:10.11947/j.AGCS.2018.20170633. DAI Yuchao, ZHANG Jing, PORIKLI F, et al. Salient object detection from multi-spectral remote sensing images with deep residual network[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):873-881. DOI:10.11947/j.AGCS.2018.20170633. |
| [11] | XU Yuelei, ZHU Mingming, XIN Peng, et al. Rapid airplane detection in remote sensing images based on multilayer feature fusion in fully convolutional neural networks[J]. Sensors, 2018, 18(7):2335. |
| [12] | YANG Yiding, ZHUANG Yin, BI Fukun, et al. M-FCN:effective fully convolutional network-based airplane detection framework[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8):1293-1297. |
| [13] | TANG Tianyu, ZHOU Shilin, DENG Zhipeng, et al. Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining[J]. Sensors, 2017, 17(2):336. |
| [14] | GUO Wei, YANG Wen, ZHANG Haijian, et al. Geospatial object detection in high resolution satellite images based on multi-scale convolutional neural network[J]. Remote Sensing, 2018, 10(1):131. |
| [15] | CHEN Zhong, ZHANG Ting, OUYANG Chao. End-to-end airplane detection using transfer learning in remote sensing images[J]. Remote Sensing, 2018, 10(1):139. |
| [16] | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA:IEEE, 2015:3431-3440. |
| [17] | UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2):154-171. |
| [18] | ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich:Springer, 2014:818-833. |
| [19] | ZITNICK C L, DOLLÁR P. Edge boxes:locating object proposals from edges[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich:Springer, 2014:391-405. |
| [20] | KUO Weicheng, HARIHARAN B, MALIK J. DeepBox:learning objectness with convolutional networks[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago:IEEE, 2015:2479-2487. |
| [21] | WANG Li, LU Yao, WANG Hong, et al. Evolving boxes for fast vehicle detection[C]//Proceedings of 2017 IEEE International Conference on Multimedia and Expo. Hong Kong, China:IEEE, 2017:1135-1140. |
| [22] | HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554. |
| [23] | LAROCHELLE H, MANDEL M, PASCANU R, et al. Learning algorithms for the classification restricted Boltzmann machine[J]. Journal of Machine Learning Research, 2012, 13(1):643-669. |
| [24] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe:ACM, 2012:1097-1105. |
| [25] | FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9):1627-1645. |
| [26] | CHENG Gong, ZHOU Peicheng, HAN Junwei. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):7405-7415. |
| [1] | Shunping JI, Jin LIU, Jian GAO, Jianya GONG. An intelligent 3D reconstruction framework via deep learning based multi-view image matching [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1633-1646. |
| [2] | Yakun XIE, Yaoji ZHAO, Jiaxing TU, Ruifeng XIA, Dejun FENG, Suning LIU, Hongyu CHEN, Jun ZHU. Edge and global features integrated network for salient object detection in optical remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1265-1279. |
| [3] | Zibo DONG, Jingxue WANG, Lijing BU, Lin FANG, Zhenghui XU. MAFNet: building extraction method from remote sensing images based on multi-scale atrous fusion network [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1094-1106. |
| [4] | Chao WANG, Tianyu CHEN, Tong ZHANG, Tanvir AHMED, Liqiang JI, Tao XIE, Jiajun YANG, Shuai WANG. Multi-sensor optical remote sensing images change detection based on global differential enhancement module and balance penalty loss [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 873-887. |
| [5] | Zhaoyang HOU, Haowen YAN, Liming ZHANG, Rongjuan MA, Ruitao QU. Zero-watermark copyright protection method for remote sensing images based on coupled neural P system and blockchain [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2247-2261. |
| [6] | Liangxiong GONG, Xinghua LI, Yuanming CHENG, Xingyou ZHAO, Renping XIE, Honggen WANG. A lightweight remote sensing images change detection network utilizing spatio-temporal difference enhancement and adaptive feature fusion [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 136-153. |
| [7] | Jialing LI, Ji QI, Weipeng LU, Chao TAO. Self-supervised learning based urban functional zone classification by integrating optical remote sensing image-OSM data [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 154-164. |
| [8] | Zhiwei XIE, Shuaizhi ZHAI, Fengyuan ZHANG, Min CHEN, Lishuang SUN. Object-oriented high-resolution image classification using inductive graph neural networks [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1610-1623. |
| [9] | Wei WANG, Wei ZHENG, Xin WANG. LAG-MANet model for remote sensing image scene classification [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1371-1383. |
| [10] | Jun YANG, Hengjing XIE, Hongchao FAN, Haowen YAN. Multi-scale entropy neural architecture search for object detection in remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1384-1400. |
| [11] | Haiyan GU, Yi YANG, Haitao LI, Lijian SUN, Shaopeng DING, Shiqi LIU. Dynamic construction of high-resolution remote sensing image sample datasets and intelligent interpretation applications [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1165-1179. |
| [12] | Daifeng PENG, Chenchen ZHAI, Dingwei ZHOU, Yongjun ZHANG, Haiyan GUAN, Yufu ZANG. High-resolution optical images change detection based on global information enhancement by pyramid semantic token [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1195-1211. |
| [13] | Jicheng WANG, Anmei GUO, Li SHEN, Tian LAN, Zhu XU, Zhilin LI. Multi-level contrastive learning for weakly supervised extraction of urban solid wastes dump from high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1212-1223. |
| [14] | Shaopeng DING, Xiushan LU, Rufei LIU, Yi YANG, Haiyan GU, Haitao LI. Building change detection method combining object feature guidance and multiple attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1224-1235. |
| [15] | Shiyan PANG, Jingjing HAO, Zhiqi ZUO, Jingjing LAN, Xiangyun HU. A high-resolution remote sensing images change detection method via the integration of dense connections and self-attention mechanisms [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2244-2253. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||