[1] |
CHENG Gong, ZHOU Peicheng, HAN Junwei. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):7405-7415.
|
[2] |
HAN Junwei, ZHANG Dingwen, CHENG Gong, et al. Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6):3325-3337.
|
[3] |
CHENG Gong, HAN Junwei, ZHOU Peicheng, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98(12):119-132.
|
[4] |
HE Chu, TU Mingxia, XIONG Dehui, et al. Adaptive component selection-based discriminative model for object detection in high-resolution SAR imagery[J]. ISPRS International Journal of Geo-Information, 2018, 7(2):72.
|
[5] |
DIAO Wenhui, SUN Xian, ZHENG Xinwei, et al. Efficient saliency-based object detection in remote sensing images using deep belief networks[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2):137-141.
|
[6] |
DU Bo, ZHANG Yuxiang, ZHANG Liangpei, et al. Beyond the sparsity-based target detector:a hybrid sparsity and statistics-based detector for hyperspectral images[J]. IEEE Transactions on Image Processing, 2016, 25(11):5345-5357.
|
[7] |
LI Xuelong, MOU Lichao, LU Xiaoqiang. Scene parsing from an MAP perspective[J]. IEEE Transactions on Cybernetics, 2015, 45(9):1876-1886.
|
[8] |
ZHANG Libao, ZHANG Yingying. Airport detection and aircraft recognition based on two-layer saliency model in high spatial resolution remote-sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(4):1511-1524.
|
[9] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada:ACM, 2015:91-99.
|
[10] |
DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN:object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain:ACM, 2016:379-387.
|
[11] |
REDMON J, FARHADI A. YOLO9000:better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017:6517-6525.
|
[12] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD:single shot MultiBox detector[C]//Proceedings of the 14th European Conference On Computer Vision. Amsterdam, The Netherlands:Springer, 2016:21-37.
|
[13] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017:936-944.
|
[14] |
HAN Xiaobing, ZHONG Yanfei, ZHANG Liangpei. An efficient and robust integrated geospatial object detection framework for high spatial resolution remote sensing imagery[J]. Remote Sensing, 2017, 9(7):666.
|
[15] |
CAI Bowen, JIANG Zhiguo, ZHANG Haopeng, et al. Airport detection using end-to-end convolutional neural network with hard example mining[J]. Remote Sensing, 2017, 9(11):1198.
|
[16] |
GUO Wei, YANG Wen, ZHANG Haijian, et al. Geospatial object detection in high resolution satellite images based on multi-scale convolutional neural network[J]. Remote Sensing, 2018, 10(1):131.
|
[17] |
邓志鹏, 孙浩, 雷琳, 等. 基于多尺度形变特征卷积网络的高分辨率遥感影像目标检测[J]. 测绘学报, 2018, 47(9):1216-1227. DOI:10.11947/j.AGCS.2018.20170595. DENG Zhipeng, SUN Hao, LEI Lin, et al. Object detection in remote sensing imagery with multi-scale deformable convolutional networks[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9):1216-1227. DOI:10.11947/j.AGCS.2018.20170595.
|
[18] |
CHEN Zhong, ZHANG Ting, OUYANG Chao. End-to-end airplane detection using transfer learning in remote sensing images[J]. Remote Sensing, 2018, 10(1):139.
|
[19] |
SHEN Zhiqiang, LIU Zhuang, LI Jianguo, et al. DSOD:learning deeply supervised object detectors from scratch[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy:IEEE, 2017:1937-1945.
|
[20] |
BELL S, ZITNICK C L, BALA K, et al. Inside-outside net:detecting objects in context with skip pooling and recurrent neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016:2874-2883.
|
[21] |
KONG Tao, SUN Fuchun, YAO Anbang, et al. RON:reverse connection with objectness prior networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017:5244-5252.
|
[22] |
ZHU Haigang, CHEN Xiaogang, DAI Weiqun, et al. Orientation robust object detection in aerial images using deep convolutional neural network[C]//Proceedings of 2015 IEEE International Conference on Image Processing. Quebec City:IEEE, 2015:3735-3739.
|
[23] |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston:IEEE, 2015:3431-3440.
|
[24] |
梁华, 宋玉龙, 钱锋等. 基于深度学习的航空对地小目标检测[J]. 液晶与显示, 2018, 33(9):793-800. LIANG Hua, SONG Yulong, QIAN Feng, et al. Detection of small target in aerial photography based on deep learning[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(9):793-800.
|
[25] |
XIA Guisong, BAI Xiang, DING Jian, et al. DOTA:a large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018:3974-3983.
|