Acta Geodaetica et Cartographica Sinica ›› 2025, Vol. 54 ›› Issue (5): 911-923.doi: 10.11947/j.AGCS.2025.20240281
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
Yiming ZHAO1(
), Kelin HU2, Kelong TU1, Yaxian QING3, Chao YANG2, Kunlun QI1,2(
), Huayi WU3
Received:2024-07-10
Revised:2025-03-20
Online:2025-06-23
Published:2025-06-23
Contact:
Kunlun QI
E-mail:zym805805@cug.edu.cn;qikunlun@cug.edu.cn
About author:ZHAO Yiming (1999—), male, postgraduate, majors in multi-modal remote sensing image fusion. E-mail: zym805805@cug.edu.cn
Supported by:CLC Number:
Yiming ZHAO, Kelin HU, Kelong TU, Yaxian QING, Chao YANG, Kunlun QI, Huayi WU. Multi-label scene classification method based on fusion of SAR and optical remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 911-923.
Tab. 1
Classification accuracy of different methods on the SEN12-MLRS dataset"
| 方法 | 指标 | 水体 | 道路 | 建筑物 | 裸地 | 绿地 | 农田 | 平均值 |
|---|---|---|---|---|---|---|---|---|
| SCTFusionViT[ | Precision | 92.38 | 33.33 | 95.70 | 63.05 | 88.11 | 74.86 | 74.57 |
| Recall | 96.22 | 15.13 | 80.10 | 76.54 | 95.60 | 69.83 | 72.24 | |
| F1值 | 94.26 | 20.81 | 87.21 | 69.14 | 91.70 | 72.26 | 72.56 | |
| Micro-F1值 | — | — | — | — | — | — | 85.93 | |
| OOD[ | Precision | 94.26 | 25.53 | 94.15 | 68.06 | 87.61 | 84.59 | 75.70 |
| Recall | 96.22 | 23.68 | 80.10 | 73.66 | 95.10 | 63.64 | 72.07 | |
| F1值 | 95.23 | 24.57 | 86.56 | 70.75 | 91.21 | 72.63 | 73.49 | |
| Micro-F1值 | — | — | — | — | — | — | 85.76 | |
| MCANet[ | Precision | 96.23 | 58.41 | 98.96 | 78.66 | 90.03 | 88.92 | 85.20 |
| Recall | 96.48 | 43.42 | 81.48 | 77.37 | 96.72 | 72.99 | 78.08 | |
| F1值 | 96.36 | 49.81 | 89.37 | 78.01 | 93.26 | 80.17 | 81.16 | |
| Micro-F1值 | — | — | — | — | — | — | 89.53 | |
| PDANet(本文方法) | Precision | 95.59 | 74.22 | 98.44 | 85.45 | 91.86 | 91.64 | 89.81 |
| Recall | 98.83 | 57.89 | 86.62 | 74.90 | 96.93 | 75.10 | 72.56 | |
| F1值 | 97.18 | 65.67 | 92.15 | 79.82 | 94.33 | 82.55 | 85.28 | |
| Micro-F1值 | — | — | — | — | — | — | 91.40 |
| [1] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vega: IEEE, 2016: 770-778. |
| [2] | TAN Mingxing, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[EB/OL]. [2024-02-03]. https://arxiv.org/abs/1905.11946. |
| [3] | LIU Zhuang, MAO Hanzi, WU Chaoyuan, et al. A ConvNet for the 2020s[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 11966-11976. |
| [4] |
白坤, 慕晓冬, 陈雪冰, 等. 融合半监督学习的无监督遥感影像场景分类[J]. 测绘学报, 2022, 51(5): 691-702. DOI .
doi: 10.11947/j.AGCS.2022.20210270 |
|
BAI Kun, MU Xiaodong, CHEN Xuebing, et al. Unsupervised remote sensing image scene classification based on semi-supervised learning[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 691-702. DOI .
doi: 10.11947/j.AGCS.2022.20210270 |
|
| [5] |
李彦胜, 吴敏郎, 张永军. 知识图谱约束深度网络的高分辨率遥感影像场景分类[J]. 测绘学报, 2024, 53(4): 677-688. DOI .
doi: 10.11947/j.AGCS.2024.20230125 |
|
LI Yansheng, WU Minlang, ZHANG Yongjun. Knowledge graph-guided deep network for high-resolution remote sensing image scene classification[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 677-688. DOI .
doi: 10.11947/j.AGCS.2024.20230125 |
|
| [6] | ZHANG Wei, TANG Ping, ZHAO Lijun. Remote sensing image scene classification using CNN-CapsNet[J]. Remote Sensing, 2019, 11(5): 494. |
| [7] | ZHANG Xinchang, SHI Qian, SUN Ying, et al. The review of land use/land cover mapping AI methodology and application in the era of remote sensing big data[J]. Journal of Geodesy and Geoinformation Science, 2024, 7(3):1-23. |
| [8] | 尹国应, 张洪艳, 张良培. 2001—2019年长江中下游农业干旱遥感监测及植被敏感性分析[J]. 武汉大学学报(信息科学版), 2022, 47(8): 1245-1256. |
| YIN Guoying, ZHANG Hongyan, ZHANG Liangpei. Remote sensing monitoring of agricultural drought in the middle and lower reaches of the Yangtze River and vegetation sensitivity analysis from 2001 to 2019[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1245-1256. | |
| [9] | YUAN Gang, WANG Yunjia, ZHAO Feng, et al. Spatiotemporal correlation characteristics between thermal infrared remote sensing obtained surface thermal anomalies and reconstructed 4D temperature fields of underground coal fires[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-18. |
| [10] | LI Yansheng, ZHANG Yongjun, ZHU Zhihui. Error-tolerant deep learning for remote sensing image scene classification[J]. IEEE Transactions on Cybernetics, 2021, 51(4): 1756-1768. |
| [11] | BOUTELL M R, LUO Jiebo, SHEN Xipeng, et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37(9): 1757-1771. |
| [12] | DAI O E, DEMIR B, SANKUR B, et al. A novel system for content-based retrieval of single and multi-label high-dimensional remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(7): 2473-2490. |
| [13] | QI Kunlun, WU Huayi, SHEN Chen, et al. Land-use scene classification in high-resolution remote sensing images using improved correlatons[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2403-2407. |
| [14] | LOWE D G. Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. |
| [15] | HARALICK R M, SHANMUGAM K, DINSTEIN I. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, SMC-3(6): 610-621. |
| [16] | JAIN A K, RATHA N K, LAKSHMANAN S. Object detection using Gabor filters[J]. Pattern Recognition, 1997, 30(2): 295-309. |
| [17] | OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987. |
| [18] | SWAIN M J, BALLARD D H. Color indexing[J]. International Journal of Computer Vision, 1991, 7(1): 11-32. |
| [19] | DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005: 886-893. |
| [20] | ZHU Qiqi, SUN Xiongli, ZHONG Yanfei, et al. High-resolution remote sensing image scene understanding: a review[C]//Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama: IEEE, 2019: 3061-3064. |
| [21] | CHENG Gong, XIE Xingxing, HAN Junwei, et al. Remote sensing image scene classification meets deep learning: challenges, methods, benchmarks, and opportunities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3735-3756. |
| [22] | PENATTI O A B, NOGUEIRA K, DOS SANTOS J A. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Boston: IEEE, 2015: 44-51. |
| [23] | 龚希, 吴亮, 谢忠, 等. 融合全局和局部深度特征的高分辨率遥感影像场景分类方法[J]. 光学学报, 2019, 39(3): 19-29. |
| GONG Xi, WU Liang, XIE Zhong, et al. Classification method of high-resolution remote sensing scenes based on fusion of global and local deep features[J]. Acta Optica Sinica, 2019, 39(3): 19-29. | |
| [24] | LU Xiaoqiang, SUN Hao, ZHENG Xiangtao. A feature aggregation convolutional neural network for remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 7894-7906. |
| [25] | 王梨名, 祁昆仑, 杨超, 等. 弱监督尺度自适应增强的高分辨率遥感影像场景分类[J]. 遥感学报, 2023, 27(12):2815-2830. |
| WANG Liming, QI Kunlun, YANG Chao, et al. Weakly supervised scale adaptive enhancement for scene classification of high-resolution remote sensing images[J]. National Remote Sensing Bulletin, 2023, 27(12):2815-2830. | |
| [26] | WANG Qi, LIU Shaoteng, CHANUSSOT J, et al. Scene classification with recurrent attention of VHR remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1155-1167. |
| [27] | LIN Daoyu, FU Kun, WANG Yang, et al. MARTA GANs: unsupervised representation learning for remote sensing image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 2092-2096. |
| [28] | YU Yunlong, LI Xianzhi, LIU Fuxian. Attention GANs: unsupervised deep feature learning for aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 519-531. |
| [29] | LÜ Pengyuan, WU Wenjun, ZHONG Yanfei, et al. SCViT: a spatial-channel feature preserving vision transformer for remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 3157671. |
| [30] | 吴倩倩, 倪康, 郑志忠. 基于双阶段高阶Transformer的遥感图像场景分类[J]. 遥感学报, 2025, 29(3): 792-807. |
| WU Qianqian, NI Kang, ZHENG Zhizhong. Remote sensing image scene classification based on two-stage high-order Transformer[J]. National Remote Sensing Bulletin, 2025, 29(3): 792-807. | |
| [31] | KARALAS K, TSAGKATAKIS G, ZERVAKIS M, et al. Land classification using remotely sensed data: going multilabel[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3548-3563. |
| [32] | QI Xiaoman, ZHU Panpan, WANG Yuebin, et al. MLRSNet: a multi-label high spatial resolution remote sensing dataset for semantic scene understanding[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169: 337-350. |
| [33] | LI Yansheng, CHEN Ruixian, ZHANG Yongjun, et al. Multi-label remote sensing image scene classification by combining a convolutional neural network and a graph neural network[J]. Remote Sensing, 2020, 12(23): 4003. |
| [34] | KING M D, PLATNICK S, MENZEL W P, et al. Spatial and temporal distribution of clouds observed by MODIS onboard the terra and aqua satellites[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7): 3826-3852. |
| [35] | LI Yansheng, WEI Fanyi, ZHANG Yongjun, et al. HS2P: hierarchical spectral and structure-preserving fusion network for multimodal remote sensing image cloud and shadow removal[J]. Information Fusion, 2023, 94: 215-228. |
| [36] | LI Xue, ZHANG Guo, CUI Hao, et al. MCANet: a joint semantic segmentation framework of optical and SAR images for land use classification[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 106: 102638. |
| [37] | ZHU Xiaoxiang, TUIA D, MOU Lichao, et al. Deep learning in remote sensing: a comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4): 8-36. |
| [38] | AUDEBERT N, LE SAUX B, LEFÈVRE S. Beyond RGB: very high resolution urban remote sensing with multimodal deep networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 140: 20-32. |
| [39] | HOFFMANN D S, CLASEN K N, DEMIR B. Transformer-based multi-modal learning for multi-label remote sensing image classification[C]//Proceedings of 2023 IEEE International Geoscience and Remote Sensing Symposium. Pasadena: IEEE, 2023: 4891-4894. |
| [40] | GAWLIKOWSKI J, SAHA S, NIEBLING J, et al. Handling unexpected inputs: incorporating source-wise out-of-distribution detection into SAR-optical data fusion for scene classification[J]. EURASIP Journal on Advances in Signal Processing, 2023, 2023(1): 47. |
| [41] | HONG Danfeng, ZHANG Bing, LI Xuyang, et al. SpectralGPT: spectral remote sensing foundation model[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(8): 5227-5244. |
| [42] | GUO Xin, LAO Jiangwei, DANG Bo, et al. SkySense: a multi-modal remote sensing foundation model towards universal interpretation for earth observation imagery[C]//Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 27662-27673. |
| [43] | ZUHLKE M, FOMFERRA N, BROCKMANN C, et al. SNAP (Sentinel application platform) and the ESA Sentinel 3 toolbox[C]//Proceedings of Sentinel-3 for Science Workshop. Venice: [s.n.], 2015. |
| [44] | LI Chengyang, SONG Dan, TONG Ruofeng, et al. Illumination-aware faster R-CNN for robust multispectral pedestrian detection[J]. Pattern Recognition, 2019, 85: 161-171. |
| [45] | YU Dingjun, WANG Hanli, CHEN Peiqiu, et al. Mixed pooling for convolutional neural networks[C]//Proceedings of 2014 Rough Sets and Knowledge Technology. Cham: Springer International Publishing, 2014: 364-375. |
| [46] | KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. [2024-01-03]. https://arxiv.org/abs/1412.6980. |
| [47] | SUMBUL G, CHARFUELAN M, DEMIR B, et al. Bigearthnet: a large-scale benchmark archive for remote sensing image understanding[C]//Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama: IEEE, 2019: 5901-5904. |
| [1] | Yanjun WANG, Xuchao TANG, Cheng WANG, Hengfan CAI. Urban and rural road surface extraction network based on road topological correlation features [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 75-89. |
| [2] | Liangxiong GONG, Xinghua LI, Yuanming CHENG, Xingyou ZHAO, Renping XIE, Honggen WANG. A lightweight remote sensing images change detection network utilizing spatio-temporal difference enhancement and adaptive feature fusion [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 136-153. |
| [3] | Jianbo TANG, Zhiyuan HU, Ju PENG, Heyan XIA, Junjie DING, Yuyu ZHANG, Xiaoming MEI. A road intersection recognition method in crowdsourced trajectory data by fusing visual features and motion features [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 182-193. |
| [4] | Fubing ZHANG, Qun SUN, Jingzhen MA, Shijie SUN, Bowei WEN. An intelligent classification method for building shape based on fusion of global and local features [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(9): 1842-1852. |
| [5] | Xin YAN, Li SHEN, Junjie PAN, Yanshuai DAI, Jicheng WANG, Xiaoli ZHENG, Zhi-lin LI. Weakly supervised building change detection integrating multi-scale feature fusion and spatial refinement for high resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1586-1597. |
| [6] | Tao XU, Yuanwei YANG, Xianjun GAO, Zhiwei WANG, Yue PAN, Shaohua LI, Lei XU, Yanjun WANG, Bo LIU, Jing YU, Fengmin WU, Haoyu SUN. Integrated graph convolution and multi-scale features for the overhead catenary system point cloud semantic segmentation [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1624-1633. |
| [7] | Yanan JIANG, Linfeng ZHENG, Qiang XU, Minggao TANG, Xing ZHU. Step-like displacement prediction of landslides guided by deformation mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1128-1139. |
| [8] | Daifeng PENG, Chenchen ZHAI, Dingwei ZHOU, Yongjun ZHANG, Haiyan GUAN, Yufu ZANG. High-resolution optical images change detection based on global information enhancement by pyramid semantic token [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1195-1211. |
| [9] | Shaopeng DING, Xiushan LU, Rufei LIU, Yi YANG, Haiyan GU, Haitao LI. Building change detection method combining object feature guidance and multiple attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1224-1235. |
| [10] | Changqi JI, Zhaojie GUO, Haili SUN, Ruofei ZHONG. Location and rapid detection method of water leakage in subway tunnels based on mobile laser scanning [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1236-1250. |
| [11] | LIN Yunhao, WANG Yanjun, LI Shaochun, CAI Hengfan. A coupled DeepLab and Transformer approach for fine classification of crop cultivation types in remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 353-366. |
| [12] | ZHANG Caili, XIANG Longgang, LI Yali, GAO Songfeng, PAN Chuanjiao. Road section navigation attribute mining [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 367-378. |
| [13] | Shiyan PANG, Jingjing HAO, Zhiqi ZUO, Jingjing LAN, Xiangyun HU. A high-resolution remote sensing images change detection method via the integration of dense connections and self-attention mechanisms [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2244-2253. |
| [14] | JIANG Baode, HANG Wei, XU Shaofen, WU Yong. Multi-scale building instance refinement extraction from remote sensing images by fusing with decentralized adaptive attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1504-1514. |
| [15] | ZHANG Yichao, ZHENG Xiangtao, LU Xiaoqiang. Hyperspectral image classification method based on hierarchical transformer network [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1139-1147. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||