Acta Geodaetica et Cartographica Sinica ›› 2025, Vol. 54 ›› Issue (7): 1230-1242.doi: 10.11947/j.AGCS.2025.20240485
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
Qing CHENG(
), Boxuan WANG, Hongyan ZHANG(
)
Received:2024-12-03
Revised:2025-07-01
Online:2025-08-18
Published:2025-08-18
Contact:
Hongyan ZHANG
E-mail:qingcheng@whu.edu.cn;zhanghongyan@cug.edu.cn
About author:CHENG Qing (1987—), female, PhD, researcher, PhD supervisor, majors in remote sensing information processing and applications. E-mail: qingcheng@whu.edu.cn
Supported by:CLC Number:
Qing CHENG, Boxuan WANG, Hongyan ZHANG. DRformer: a progressive coupled multiscale CNN and condensed attention Transformer method for hyperspectral image super-resolution[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1230-1242.
Tab. 1
Network parameters of the DRformer network"
| 模块 | 网络架构 | 输入尺寸 | 模型参数 | 输出尺寸 |
|---|---|---|---|---|
| 整体结构 | MAWSA | H×W×c | — | H×W×256 |
| Conv-UP | H×W×256 | 3×3,c,Stride1 | sH/2×sW/2×c | |
| Concatenation | sH/2×sW/2×c | — | sH/2×sW/2×C | |
| UP | sH/2×sW/2×C | — | sH×sW×C | |
| CADR-Conv | sH×sW×C | 1×1,256,Stride1 | sH×sW×256 | |
| Bicubic-Conv | H×W×C | 3×3,256,Stride1 | sH×sW×256 | |
| Conv | sH×sW×256 | 3×3,C,Stride1 | sH×sW×C | |
| MAWSA | Dconv(1,3,5)-ReLU | H×W×c | 3×3,256,Stride1,dilation(1,3,5) | H×W×256 |
| Conv-ReLU-Conv | H×W×256 | 3×3,256,Stride1 | H×W×256 | |
| AWCA | H×W×256 | reduction=16 | H×W×256 | |
| CADR | Condensed | sH×sW×C | num_heads=8,d=16 | sH×sW×C |
| Attention | ||||
| DRNet | sH×sW×C | sH×sW×C | ||
| (PReLU-Conv) | 3×3,256,Stride1 | |||
| (Resblock) | 3×3,256,Stride1 | |||
| (PReLU-Conv) | 3×3,C,Stride1 |
Tab. 2
The test results of Chikusei dataset"
| 比例因子 | 方法 | PSNR | SSIM | CC | RMSE | ERGAS | SAM |
|---|---|---|---|---|---|---|---|
| ×4 | Bicubic | 37.637 7 | 0.895 3 | 0.921 2 | 0.015 6 | 6.756 3 | 3.403 9 |
| GDRRN | 37.721 8 | 0.897 0 | 0.922 3 | 0.015 4 | 6.697 0 | 3.321 5 | |
| SSPSR | 39.505 5 | 0.932 8 | 0.947 5 | 0.012 6 | 5.473 7 | 2.719 0 | |
| EUNet | 38.867 0 | 0.926 0 | 0.939 7 | 0.013 4 | 5.931 8 | 2.751 7 | |
| MSDformer | 39.067 1 | 0.924 5 | 0.942 3 | 0.013 2 | 5.714 1 | 2.864 4 | |
| 本文方法 | 40.085 1 | 0.933 4 | 0.943 3 | 0.012 4 | 5.224 1 | 2.697 1 | |
| ×8 | Bicubic | 34.504 8 | 0.806 8 | 0.831 3 | 0.022 3 | 9.697 5 | 5.043 5 |
| GDRRN | 34.556 4 | 0.807 3 | 0.832 7 | 0.022 2 | 9.646 9 | 4.991 5 | |
| SSPSR | 34.938 0 | 0.822 9 | 0.848 5 | 0.021 0 | 9.318 6 | 4.863 2 | |
| EUNet | 35.115 6 | 0.833 4 | 0.853 8 | 0.020 7 | 9.073 7 | 4.502 8 | |
| MSDformer | 34.790 2 | 0.816 2 | 0.842 2 | 0.021 5 | 9.433 1 | 4.823 0 | |
| 本文方法 | 35.913 8 | 0.822 3 | 0.810 6 | 0.020 6 | 8.594 5 | 4.478 9 |
Tab. 3
The test results of the Houston2013 dataset"
| 方法 | 比例因子 | PSNR | SSIM | CC | RMSE | ERGAS | SAM |
|---|---|---|---|---|---|---|---|
| Bicubic | ×4 | 33.698 4 | 0.801 6 | 0.901 4 | 0.025 6 | 6.157 1 | 6.459 2 |
| GDRRN | ×4 | 33.798 3 | 0.806 7 | 0.903 2 | 0.025 3 | 6.084 1 | 6.342 1 |
| SSPSR | ×4 | 34.207 3 | 0.831 4 | 0.910 1 | 0.023 9 | 5.748 1 | 5.494 4 |
| EUNet | ×4 | 34.264 0 | 0.834 3 | 0.911 4 | 0.023 7 | 5.698 1 | 5.479 8 |
| MSDformer | ×4 | 34.077 1 | 0.828 8 | 0.908 8 | 0.024 2 | 5.849 8 | 5.894 3 |
| 本文方法 | ×4 | 34.477 7 | 0.840 1 | 0.915 5 | 0.023 1 | 5.567 0 | 5.355 8 |
| Bicubic | ×8 | 31.120 9 | 0.673 0 | 0.816 3 | 0.034 7 | 8.339 1 | 9.365 7 |
| GDRRN | ×8 | 31.097 6 | 0.674 2 | 0.814 0 | 0.034 5 | 8.320 1 | 9.368 8 |
| SSPSR | ×8 | 31.221 5 | 0.684 1 | 0.820 7 | 0.033 9 | 8.174 1 | 8.895 9 |
| EUNet | ×8 | 31.349 1 | 0.687 7 | 0.824 1 | 0.033 5 | 8.055 6 | 8.634 9 |
| MSDformer | ×8 | 31.305 1 | 0.688 2 | 0.823 0 | 0.033 6 | 8.108 1 | 9.079 3 |
| 本文方法 | ×8 | 31.350 2 | 0.690 4 | 0.824 2 | 0.033 5 | 8.120 1 | 8.787 1 |
Tab. 5
Ablation experiment results"
| 变体 | 参数量/MB | PSNR | SSIM | CC | RMSE | ERGAS | SAM |
|---|---|---|---|---|---|---|---|
| 本文方法 | 12.988 2 | 34.477 7 | 0.840 1 | 0.915 5 | 0.023 1 | 5.567 0 | 5.355 8 |
| 变体1 | 14.241 6 | 34.229 5 | 0.830 7 | 0.910 9 | 0.023 7 | 5.728 5 | 5.654 3 |
| 变体2 | 12.988 2 | 33.968 1 | 0.827 6 | 0.907 1 | 0.024 1 | 5.883 1 | 6.114 6 |
| 变体3 | 9.095 6 | 34.181 7 | 0.828 9 | 0.910 4 | 0.023 9 | 5.760 4 | 5.558 5 |
| 变体4 | 5.689 8 | 34.112 1 | 0.827 5 | 0.909 2 | 0.024 1 | 5.818 8 | 5.985 3 |
| [1] | SABINS F F. Remote sensing for mineral exploration[J]. Ore Geology Reviews, 1999, 14(3-4): 157-183. |
| [2] | BACKMAN V, WALLACE M B, PERELMAN L T, et al. Detection of preinvasive cancer cells[J]. Nature, 2000, 406(6791): 35-36. |
| [3] | LU Guolan, FEI Baowei. Medical hyperspectral imaging: a review[J]. Journal of Biomedical Optics, 2014, 19(1): 10901. |
| [4] | WANG Kexian, ZHENG Shunyi, LI Rui, et al. A deep double-channel dense network for hyperspectral image classification[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 46-62. |
| [5] | XUE Zhaohui, NIE Xiangyu. Low-rank and sparse representation with adaptive neighborhood regularization for hyperspectral image classification[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 73-90. |
| [6] |
陈超, 梁锦涛, 杨刚, 等. 面向土地覆盖精准分类的遥感特征参数优选方法[J]. 测绘学报, 2024, 53(7): 1401-1416. DOI: .
doi: 10.11947/j.AGCS.2024.20230327 |
|
CHEN Chao, LIANG Jintao, YANG Gang, et al. Remote sensing parameters optimization for accurate land cover classification[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1401-1416. DOI: .
doi: 10.11947/j.AGCS.2024.20230327 |
|
| [7] |
叶思菁. 大数据环境下遥感图谱应用方法研究:以作物干旱监测为例[J]. 测绘学报, 2018, 47(6): 892. DOI: .
doi: 10.11947/j.AGCS.2018.20170535 |
|
YE Sijing. Research on application of remote sensing tupu-take monitoring of meteorological disaster for example[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 892. DOI: .
doi: 10.11947/j.AGCS.2018.20170535 |
|
| [8] | LI Jiaxin, HONG Danfeng, GAO Lianru, et al. Deep learning in multimodal remote sensing data fusion: a comprehensive review[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102926. |
| [9] |
张兵, 高连如, 李嘉鑫, 等. 高/多光谱遥感图像超分辨率融合研究进展与展望[J]. 测绘学报, 2023, 52(7): 1074-1089. DOI: .
doi: 10.11947/j.AGCS.2023.20220499 |
|
ZHANG Bing, GAO Lianru, LI Jiaxin, et al. Advances and prospects in hyperspectral and multispectral remote sensing image super-resolution fusion[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1074-1089. DOI: .
doi: 10.11947/j.AGCS.2023.20220499 |
|
| [10] | JIANG Junjun, SUN He, LIU Xianming, et al. Learning spatial-spectral prior for super-resolution of hyperspectral imagery[J]. IEEE Transactions on Computational Imaging, 2020, 6: 1082-1096. |
| [11] | DIAN Renwei, LI Shutao, GUO Anjing, et al. Deep hyperspectral image sharpening[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(11): 5345-5355. |
| [12] | LIU Jianjun, WU Zebin, XIAO Liang, et al. A truncated matrix decomposition for hyperspectral image super-resolution[J]. IEEE Transactions on Image Processing, 2020, 29: 8028-8042. |
| [13] | DIAN Renwei, LI Shutao, FANG Leyuan. Learning a low tensor-train rank representation for hyperspectral image super-resolution[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(9): 2672-2683. |
| [14] | KEYS R G. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6): 1153-1160. |
| [15] | XU Yang, WU Zebin, CHANUSSOT J, et al. Hyperspectral images super-resolution via learning high-order coupled tensor ring representation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 4747-4760. |
| [16] | ZHANG Lefei, SONG Liangchen, DU Bo, et al. Nonlocal low-rank tensor completion for visual data[J]. IEEE Transactions on Cybernetics, 2021, 51(2): 673-685. |
| [17] | XU Yang, WU Zebin, CHANUSSOT J, et al. Nonlocal patch tensor sparse representation for hyperspectral image super-resolution[J]. IEEE Transactions on Image Processing, 2019, 28(6): 3034-3047. |
| [18] | GAO Lianru, HONG Danfeng, YAO Jing, et al. Spectral super-resolution of multispectral imagery with joint sparse and low-rank learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2269-2280. |
| [19] | DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307. |
| [20] | KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[EB/OL]. [2024-10-15]. https://arxiv.org/abs/1511.04587v2. |
| [21] | LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu: IEEE, 2017: 1132-1140. |
| [22] | LI Yadong, MAVROMATIS S, ZHANG Feng, et al. Single-image super-resolution for remote sensing images using a deep generative adversarial network with local and global attention mechanisms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 3000224. |
| [23] | MENG Yapeng, LI Wenyuan, LEI Sen, et al. Large-factor super-resolution of remote sensing images with spectra-guided generative adversarial networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5634111. |
| [24] | WANG Junjie, ZHANG Mengmeng, LI Wei, et al. A multistage information complementary fusion network based on flexible-mixup for HSI-X image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(12): 17189-17201. |
| [25] | WANG Wuli, MA Xiaohu, LENG Linchun, et al. A hybrid CNN based on global reasoning for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. |
| [26] | MEI Shaohui, YUAN Xin, JI Jingyu, et al. Hyperspectral image spatial super-resolution via 3D full convolutional neural network[J]. Remote Sensing, 2017, 9(11): 1139. |
| [27] | LI Qiang, WANG Qi, LI Xuelong. Mixed 2D/3D convolutional network for hyperspectral image super-resolution[J]. Remote Sensing, 2020, 12(10): 1660. |
| [28] | FU Ying, LIANG Zhiyuan, YOU Shaodi. Bidirectional 3D quasi-recurrent neural network for hyperspectral image super-resolution[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2674-2688. |
| [29] | HAUNT J M, FERNANDEZ-BELTRANN R, PAOLETTI M E, et al. Remote sensing image super-resolution using deep residual channel attention[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9277-9289. |
| [30] | LIU Denghong, LI Jie, YUAN Qiangqiang. A spectral grouping and attention-driven residual dense network for hyperspectral image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7711-7725. |
| [31] | ZHANG Jing, SHAO Minhao, WAN Zekang, et al. Multi-scale feature mapping network for hyperspectral image super-resolution[J]. Remote Sensing, 2021, 13(20): 4180. |
| [32] | ALEXEY D. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. [2024-11-25]. https://arxiv.org/abs/2010.11929. |
| [33] | YIN Hongxu, VAHDAT A, ALVAREZ J M, et al. A-ViT: adaptive tokens for efficient vision transformer[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 10799-10808. |
| [34] | ZAMIR S W, ARORA A, KHAN S, et al. Restormer: efficient transformer for high-resolution image restoration[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 5718-5729. |
| [35] | WANG Min, WANG Peidong. CFM-UNet: a joint CNN and transformer network via cross feature modulation for remote sensing images segmentation[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(4): 40-47. |
| [36] | LIANG Jingyun, CAO Jiezhang, SUN Guolei, et al. SwinIR: image restoration using swin transformer[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision Workshops. Montreal: IEEE, 2021: 1833-1844. |
| [37] | LIU Yaoting, HU Jianwen, KANG Xudong, et al. Interactformer: interactive transformer and CNN for hyperspectral image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 3183468. |
| [38] | CHEN Xiangyu, WANG Xintao, ZHOU Jiantao, et al. Activating more pixels in image super-resolution transformer[EB/OL]. [2024-11-25]. https://arxiv.org/abs/2205.04437v3. |
| [39] | HE Jiang, YUAN Qiangqiang, LI Jie, et al. DsTer: a dense spectral transformer for remote sensing spectral super-resolution[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 109: 102773. |
| [40] | CHEN Shi, ZHANG Lefei, ZHANG Liangpei. MSDformer: multiscale deformable transformer for hyperspectral image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-14. |
| [41] | LI Jiaojiao, WU Chaoxiong, SONG Rui, et al. Adaptive weighted attention network with camera spectral sensitivity prior for spectral reconstruction from RGB images[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020: 1894-1903. |
| [42] | ZHAO Haiyu, GOU Yuanbiao, LI Boyun, et al. Comprehensive and delicate: an efficient transformer for image restoration[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 14122-14132. |
| [43] | LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[J]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2017, 7: 1132-1140. |
| [44] | AGGARWAL H K, MAJUMDAR A. Hyperspectral image denoising using spatio-spectral total variation[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 442-446. |
| [45] | LI Yong, ZHANG Lei, DINGL C, et al. Single hyperspectral image super-resolution with grouped deep recursive residual network[C]//Proceedings of 2018 IEEE Fourth International Conference on Multimedia Big Data. Xi'an: IEEE, 2018: 1-4. |
| [46] | LIU Denghong, LI Jie, YUAN Qiangqiang, et al. An efficient unfolding network with disentangled spatial-spectral representation for hyperspectral image super-resolution[J]. Information Fusion, 2023, 94: 92-111. |
| [47] | WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. |
| [48] | LONCAN L, DE ALMEIDA L B, BIOUCAS-DIAS J M, et al. Hyperspectral pansharpening: a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(3): 27-46. |
| [1] | Chao WANG, Tianyu CHEN, Tong ZHANG, Tanvir AHMED, Liqiang JI, Tao XIE, Jiajun YANG, Shuai WANG. Multi-sensor optical remote sensing images change detection based on global differential enhancement module and balance penalty loss [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 873-887. |
| [2] | Yiming ZHAO, Kelin HU, Kelong TU, Yaxian QING, Chao YANG, Kunlun QI, Huayi WU. Multi-label scene classification method based on fusion of SAR and optical remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 911-923. |
| [3] | Yanjun WANG, Xuchao TANG, Cheng WANG, Hengfan CAI. Urban and rural road surface extraction network based on road topological correlation features [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 75-89. |
| [4] | Liangxiong GONG, Xinghua LI, Yuanming CHENG, Xingyou ZHAO, Renping XIE, Honggen WANG. A lightweight remote sensing images change detection network utilizing spatio-temporal difference enhancement and adaptive feature fusion [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 136-153. |
| [5] | Tao XU, Yuanwei YANG, Xianjun GAO, Zhiwei WANG, Yue PAN, Shaohua LI, Lei XU, Yanjun WANG, Bo LIU, Jing YU, Fengmin WU, Haoyu SUN. Integrated graph convolution and multi-scale features for the overhead catenary system point cloud semantic segmentation [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1624-1633. |
| [6] | Yanan JIANG, Linfeng ZHENG, Qiang XU, Minggao TANG, Xing ZHU. Step-like displacement prediction of landslides guided by deformation mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1128-1139. |
| [7] | Daifeng PENG, Chenchen ZHAI, Dingwei ZHOU, Yongjun ZHANG, Haiyan GUAN, Yufu ZANG. High-resolution optical images change detection based on global information enhancement by pyramid semantic token [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1195-1211. |
| [8] | Shaopeng DING, Xiushan LU, Rufei LIU, Yi YANG, Haiyan GU, Haitao LI. Building change detection method combining object feature guidance and multiple attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1224-1235. |
| [9] | Changqi JI, Zhaojie GUO, Haili SUN, Ruofei ZHONG. Location and rapid detection method of water leakage in subway tunnels based on mobile laser scanning [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1236-1250. |
| [10] | Weiying XIE, Zixuan WANG, Yunsong LI. Efficient-communication on-orbit distributed hyperspectral image processing [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 589-598. |
| [11] | Shiyan PANG, Jingjing HAO, Zhiqi ZUO, Jingjing LAN, Xiangyun HU. A high-resolution remote sensing images change detection method via the integration of dense connections and self-attention mechanisms [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2244-2253. |
| [12] | Quanyi ZHAO, Fujian ZHENG, Bo XIA, Zhengying LI, Hong HUANG. Hyperspectral remote sensing image scene classification method based on deep manifold distillation network [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2404-2415. |
| [13] | Huafei YU, Tianqi QIU, Zhe ZHOU, Chongya GONG, Tianyuan XIAO, Min YANG, Tinghua AI. Drainage pattern recognition supported by graph Transformer [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2075-2085. |
| [14] | SUN Genyun, LI Renren, ZHANG Aizhu, AN Na, FU Hang, PAN Zhaojie. Band selection algorithm for reverse nearest neighbor density peak clustering of hyperspectral images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(1): 8-19. |
| [15] | SUN Yifan, LIU Bing, YU Xuchu, TAN Xiong, YU Anzhu. A high-resolution feature network image-level classification method for hyperspectral image [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(1): 50-64. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||