Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (6): 1236-1250.doi: 10.11947/j.AGCS.2024.20230438
• Smart Surveying and Mapping • Previous Articles
Changqi JI1(), Zhaojie GUO1, Haili SUN1,2(), Ruofei ZHONG1,2
Received:
2023-10-07
Published:
2024-07-22
Contact:
Haili SUN
E-mail:jichangqi123@163.com;sunhaili@cnu.edu.cn
About author:
JI Changqi (1996—), male, master, majors in tunnel structure deformation and apparent disease detection. E-mail: jichangqi123@163.com
Supported by:
CLC Number:
Changqi JI, Zhaojie GUO, Haili SUN, Ruofei ZHONG. Location and rapid detection method of water leakage in subway tunnels based on mobile laser scanning[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1236-1250.
Tab.2
Comparison results of the accuracy of different localization loss functions for tunnels"
数据集 | 损失函数 | 总标记 | TP | FP | FN | P | R | m AP0.5 | F1值 |
---|---|---|---|---|---|---|---|---|---|
盾构法 | CIoU | 375 | 303 | 80 | 72 | 0.791 | 0.808 | 0.807 | 0.799 |
DIoU | 375 | 283 | 49 | 92 | 0.852 | 0.755 | 0.802 | 0.801 | |
GIoU | 375 | 312 | 83 | 63 | 0.790 | 0.832 | 0.825 | 0.810 | |
矿山法 | CIoU | 398 | 302 | 74 | 96 | 0.803 | 0.759 | 0.815 | 0.780 |
DIoU | 398 | 300 | 97 | 98 | 0.756 | 0.754 | 0.802 | 0.755 | |
GIoU | 398 | 323 | 71 | 75 | 0.820 | 0.812 | 0.848 | 0.816 |
Tab.4
Shield tunnel ablation test results"
试验组 | 总标记 | TP | FP | FN | P | R | m AP0.5 | F1值 |
---|---|---|---|---|---|---|---|---|
G1 | 375 | 303 | 80 | 72 | 0.791 | 0.808 | 0.807 | 0.799 |
G2 | 375 | 316 | 103 | 59 | 0.753 | 0.843 | 0.82 | 0.795 |
G3 | 375 | 293 | 56 | 82 | 0.84 | 0.781 | 0.837 | 0.809 |
G4 | 375 | 312 | 83 | 63 | 0.790 | 0.832 | 0.825 | 0.810 |
G5 | 375 | 304 | 63 | 71 | 0.828 | 0.811 | 0.799 | 0.819 |
G6 | 375 | 319 | 73 | 56 | 0.814 | 0.851 | 0.852 | 0.832 |
G7 | 375 | 318 | 53 | 57 | 0.857 | 0.848 | 0.868 | 0.853 |
G8 | 375 | 320 | 47 | 55 | 0.872 | 0.853 | 0.865 | 0.862 |
Tab.5
Mine method tunnel ablation test results"
试验组 | 总标记 | TP | FP | FN | P | R | m AP0.5 | F1值 |
---|---|---|---|---|---|---|---|---|
G1 | 398 | 302 | 74 | 96 | 0.803 | 0.759 | 0.815 | 0.78 |
G2 | 398 | 329 | 91 | 69 | 0.783 | 0.827 | 0.831 | 0.804 |
G3 | 398 | 316 | 67 | 82 | 0.825 | 0.794 | 0.886 | 0.809 |
G4 | 398 | 323 | 71 | 75 | 0.820 | 0.812 | 0.848 | 0.816 |
G5 | 398 | 323 | 62 | 75 | 0.839 | 0.812 | 0.867 | 0.825 |
G6 | 398 | 326 | 46 | 72 | 0.876 | 0.819 | 0.879 | 0.847 |
G7 | 398 | 328 | 55 | 70 | 0.856 | 0.824 | 0.878 | 0.840 |
G8 | 398 | 329 | 41 | 69 | 0.889 | 0.827 | 0.871 | 0.857 |
Tab.6
Comparison of results of different methods for tunnels"
数据集 | 方法 | 每秒检测图片数量 | TP | FP | FN | P | R | m AP0.5 | F1值 |
---|---|---|---|---|---|---|---|---|---|
盾构法 | Faster(Swin) | 0.161 | 332 | 157 | 43 | 0.679 | 0.885 | 0.855 | 0.769 |
Faster(ConvNeXt) | 0.169 | 342 | 139 | 33 | 0.711 | 0.912 | 0.869 | 0.799 | |
YOLOv8 | 0.030 | 280 | 64 | 95 | 0.814 | 0.747 | 0.812 | 0.779 | |
本文方法 | 0.045 | 320 | 47 | 55 | 0.872 | 0.853 | 0.865 | 0.862 | |
矿山法 | Faster(Swin) | 0.168 | 328 | 149 | 70 | 0.688 | 0.824 | 0.865 | 0.75 |
Faster(Conv NeXt) | 0.177 | 355 | 154 | 43 | 0.697 | 0.892 | 0.883 | 0.783 | |
YOLOv8 | 0.031 | 291 | 50 | 107 | 0.853 | 0.731 | 0.824 | 0.788 | |
本文方法 | 0.049 | 329 | 41 | 69 | 0.889 | 0.827 | 0.871 | 0.857 |
[1] | 韩宝明, 余怡然, 习喆, 等. 城市轨道交通2023年度统计和分析报告[R].北京: 中国城市轨道交通协会, 2024. |
HAN Baoming, YU Yiran, XI Zhe, et al. Urban rail transit 2023 annual statistics and analysis report [R].Beijing: China Association of Metros, 2024. | |
[2] | 邓普. 铁路车载探地雷达检测隧道渗漏水的研究[D]. 成都: 西南交通大学, 2015. |
DENG Pu. Research on detection of railway tunnel seepage with train-mounted GPR[D]. Chengdu: Southwest Jiaotong University, 2015. | |
[3] | 陈军, 刘万增, 武昊, 等. 智能化测绘的基本问题与发展方向[J]. 测绘学报, 2021, 50(8):995-1005.DOI:10.11947/j.AGCS.2021.20210235. |
CHEN Jun, LIU Wanzeng, WU Hao, et al. Smart surveying and mapping: fundamental issues and research agenda[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):995-1005.DOI:10.11947/j.AGCS.2021.20210235. | |
[4] | 郑晔, 郭仁忠, 马丁, 等. 面向地理路网的交通信号智能协同控制方法[J]. 测绘学报, 2021, 50(9):1203-1210. DOI:10.11947/j.AGCS.2021.20210191. |
ZHENG Ye, GUO Renzhong, MA Ding, et al. Multi-agent cooperative control for traffic signal on geographic road network[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9):1203-1210. DOI:10.11947/j.AGCS.2021.20210191. | |
[5] | 杨必胜, 韩旭, 董震. 适用于城市场景大规模点云语义标识的深度学习网络[J]. 测绘学报, 2021, 50(8):1059-1067.DOI:10.11947/j.AGCS.2021.20210093. |
YANG Bisheng, HAN Xu, DONG Zhen. A deep learning network for semantic labeling of large-scale urban point clouds[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1059-1067.DOI:10.11947/j.AGCS.2021.20210093. | |
[6] | 李俊良. 地铁盾构隧道渗漏水病害点云自动识别研究[D]. 北京: 北京交通大学, 2021. |
LI Junliang. Automatic recognition of point cloud of water leakage in subway shield tunnel[D]. Beijing: Beijing Jiaotong University, 2021. | |
[7] | DU Liming, ZHONG Ruofei, SUN Haili, et al. Dislocation detection of shield tunnel based on dense cross-sectional point clouds[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11):22227-22243. |
[8] | 阮东旭, 姚连璧, 许正文, 等. 基于轨道移动激光扫描的圆形隧道正射影像纠正算法[J]. 工程勘察, 2021, 49(1):41-46. |
RUAN Dongxu, YAO Lianbi, XU Zhengwen, et al. An orthoimage correction algorithm for circular tunnel based on track moving laser scanning[J]. Geotechnical Investigation & Surveying, 2021, 49(1):41-46. | |
[9] | UKAI M, NAGAMINE N. A high-performance inspection system of tunnel wall deformation using continuous scan image[EB/OL]. [2023-10-02]. https://documents.pub/document/a-high-performance-inspection-system-of-tunnel-wall-high-performance-inspection.html?page=1. |
[10] | 刘学增, 桑运龙, 苏云帆. 基于数字图像处理的隧道渗漏水病害检测技术[J]. 岩石力学与工程学报, 2012, 31(S2):3779-3786. |
LIU Xuezeng, SANG Yunlong, SU Yunfan. Detection technology of tunnel leakage disaster based on digital image processing[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2):3779-3786. | |
[11] | 杨国田, 王云龙, 宋森平. 基于PSO的最佳熵阈值红外图像隧道渗漏水提取[J]. 计算机仿真, 2022, 39(7):233-237. |
YANG Guotian, WANG Yunlong, SONG Senping. Tunnel leakage water extraction from infrared image with optimal entropic thresholding based on particle swarm[J]. Computer Simulation, 2022, 39(7):233-237. | |
[12] | 吴杭彬, 于鹏飞, 刘春, 等. 基于红外热成像的地铁隧道渗漏水提取[J]. 工程勘察, 2019, 47(2):44-49, 61. |
WU Hangbin, YU Pengfei, LIU Chun, et al. Extraction of metro tunnel seepage based on infrared thermal imaging[J]. Geotechnical Investigation & Surveying, 2019, 47(2):44-49, 61. | |
[13] | HUANG Hongwei, SUN Yan, XUE Yadong, et al. Inspection equipment study for subway tunnel defects by grey-scale image processing[J]. Advanced Engineering Informatics, 2017, 32:188-201. |
[14] | OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1):62-66. |
[15] | XU Teng, XU Lijun, LI Xiaolu, et al. Detection of water leakage in underground tunnels using corrected intensity data and 3D point cloud of terrestrial laser scanning[J]. IEEE Access, 2018, 6:32471-32480. |
[16] | 吴昌睿, 黄宏伟. 地铁隧道渗漏水的激光扫描检测方法及应用[J]. 自然灾害学报, 2018, 27(4):59-66. |
WU Changrui, HUANG Hongwei. Laser scanning inspection method and application for metro tunnel leakage[J]. Journal of Natural Disasters, 2018, 27(4):59-66. | |
[17] | HUANG Hongwei, LI Qingtong, ZHANG Dongming. Deep learning based image recognition for crack and leakage defects of metro shield tunnel[J]. Tunnelling and Underground Space Technology, 2018, 77:166-176. |
[18] | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431-3440. |
[19] | ZHAO Shuai, ZHANG Dongming, HUANG Hongwei. Deep learning-based image instance segmentation for moisture marks of shield tunnel lining[J]. Tunnelling and Underground Space Technology, 2020, 95:103156. |
[20] | HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venic: IEEE, 2017: 2980-2988. |
[21] | XUE Yadong, CAI Xinyuan, SHADABFAR M, et al. Deep learning-based automatic recognition of water leakage area in shield tunnel lining[J]. Tunnelling and Underground Space Technology, 2020, 104:103524. |
[22] | CAI Zhaowei, VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(5):1483-1498. |
[23] | LIU Shuang, SUN Haili, ZHANG Zhenxin, et al. A multiscale deep feature for the instance segmentation of water leakages in tunnel using MLS point cloud intensity images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-16. |
[24] | MAN Ke, LIU Ruilin, LIU Xiaoli, et al. Water leakage and crack identification in tunnels based on transfer-learning and convolutional neural networks[J]. Water, 2022, 14(9):1462. |
[25] | GENG Peng, JIA Mengye, REN Xiaoxia. Tunnel lining water leakage image Segmentation based on improved BlendMask[J]. Structural Health Monitoring, 2023, 22(2):865-878. |
[26] | LI Mengjiao, WANG Hao, ZHANG Shumei, et al. Subway water leakage detection based on improved deeplabV3+[C]//Proceedings of 2022 International Conference on Computer Systems. Qingdao: IEEE, 2022. |
[27] | HAN Lei, CHEN Jiangfan, LI Haobo, et al. Multispectral water leakage detection based on a one-stage anchor-free modality fusion network for metro tunnels[J]. Automation in Construction, 2022, 140:104345. |
[28] | CHEN Qian, XIONG Chuanguo, LÜ Weishan, et al. Convolutional neural network with attention module for identification of tunnel seepage[J]. Transportation Research Record: Journal of the Transportation Research Board, 2022, 2676(11):112-123. |
[29] | GENG Peng, TAN Ziye, LUO Jun, et al. ACPA-Net: atrous channel pyramid attention network for segmentation of leakage in rail tunnel linings[J]. Electronics, 2023, 12(2):255. |
[30] | 周宝定, 谢沛瑶, 郭文浩, 等. 基于激光点云灰度图像的隧道渗水病害检测[J]. 测绘通报, 2023 (8):34-39. |
ZHOU Baoding, XIE Peiyao, GUO Wenhao, et al. Detection of tunnel leakage based on gray scale image of laser point cloud[J]. Bulletin of Surveying and Mapping, 2023 (8):34-39. | |
[31] | FENG Shijin, FENG Yong, ZHANG Xiaolei, et al. Deep learning with visual explanations for leakage defect segmentation of metro shield tunnel[J]. Tunnelling and Underground Space Technology, 2023, 136:105107. |
[32] | GUO Zhaojie, WEI Jifan, SUN Haili, et al. Enhanced water leakage detection in shield tunnels based on laser scanning intensity images using RDES-Net[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17:5680-5690. |
[33] | WANG Chenyao, BOCHKOVSKIY A, LIAO Hongyuan. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. [2023-10-02]. https://arxiv.org/pdf/2207.02696. |
[34] | JI Changqi, SUN Haili, ZHONG Ruofei, et al. Precise positioning method of moving laser point cloud in shield tunnel based on bolt hole extraction[J]. Remote Sensing, 2022, 14(19):4791. |
[35] | ZHANG Wuming, QI Jianbo, WAN Peng, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6):501. |
[36] | 高智梅, 王竞雪, 沈昭宇. 机载LiDAR建筑物点云渐进提取算法[J]. 测绘通报, 2021 (8):7-13. |
GAO Zhimei, WANG Jingxue, SHEN Zhaoyu. Aerial LiDAR building point-cloud progressive extraction algorithm[J]. Bulletin of Surveying and Mapping, 2021 (8):7-13. | |
[37] | JI Changqi, SUN Haili, ZHONG Ruofei, et al. Deformation detection of mining tunnel based on automatic target recognition[J]. Remote Sensing, 2023, 15(2):307. |
[38] | LIU Zhuang, MAO Hanzi, WU Chaoyuan, et al. A ConvNet for the 2020s[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 11966-11976. |
[39] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of 2018 European Conference on Computer Vision. Munich: IEEE, 2018: 3-19. |
[40] | REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 658-666. |
[41] | ZHENG Zhaohui, WANG Ping, LIU Wei, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7):12993-13000. |
[42] | BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS: improving object detection with one line of code[C]//Proceedings of 2017 IEEE International Conference on Computer Visionand Pattern Recognition. Venice: IEEE, 2017: 5562-5570. |
[43] | SUN Haili, XU Zhengwen, YAO Lianbi, et al. Tunnel monitoring and measuring system using mobile laser scanning: design and deployment[J]. Remote Sensing, 2020, 12(4):730. |
[44] | SUN Haili, LIU Shuang, ZHONG Ruofei, et al. Cross-section deformation analysis and visualization of shield tunnel based on mobile tunnel monitoring system[J]. Sensors, 2020, 20(4):1006. |
[45] | YUE Zeyu, SUN Haili, ZHONG Ruofei, et al. Measurement of tunnel clearance convergence using mobile laser detection technology[J]. Canadian Journal of Remote Sensing, 2021, 47(1):100-118. |
[1] | Yanan JIANG, Linfeng ZHENG, Qiang XU, Minggao TANG, Xing ZHU. Step-like displacement prediction of landslides guided by deformation mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1128-1139. |
[2] | Daifeng PENG, Chenchen ZHAI, Dingwei ZHOU, Yongjun ZHANG, Haiyan GUAN, Yufu ZANG. High-resolution optical images change detection based on global information enhancement by pyramid semantic token [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1195-1211. |
[3] | Shaopeng DING, Xiushan LU, Rufei LIU, Yi YANG, Haiyan GU, Haitao LI. Building change detection method combining object feature guidance and multiple attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1224-1235. |
[4] | JIANG Baode, HANG Wei, XU Shaofen, WU Yong. Multi-scale building instance refinement extraction from remote sensing images by fusing with decentralized adaptive attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1504-1514. |
[5] | ZHANG Yichao, ZHENG Xiangtao, LU Xiaoqiang. Hyperspectral image classification method based on hierarchical transformer network [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1139-1147. |
[6] | HU Gongming, YANG Chuncheng, XU Li, SHANG Haibin, WANG Zefan, QIN Zhilong. Improved U-Net remote sensing image semantic segmentation method [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(6): 980-989. |
[7] | GU Xiaohu, LI Zhengjun, MIAO Jianhao, LI Xinghua, SHEN Huanfeng. Dual-channel parallel hybrid convolutional neural networks based classification method for high-resolution remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 798-807. |
[8] | HU Minghong, LI Jiatian, YAO Yanji, A Xiaohui, LU Mei, LI Wen. SER-UNet algorithm for building extraction from high-resolution remote sensing image combined with multipath [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 808-817. |
[9] | YU Donghang, XU Qing, ZHAO Chuan, GUO Haitao, LU Jun, LIN Yuzhun, LIU Xiangyun. Attention-guided feature fusion and joint learning for remote sensing image scene classification [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 624-637. |
[10] | JIANG Ming, ZHANG Xinchang, SUN Ying, FENG Weiming, RUAN Yongjian. Full-scale feature aggregation network for high-resolution remote sensing image change detection [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(10): 1738-1748. |
[11] | FANG Lina, WANG Shuang, ZHAO Zhiyuan, FU Huasheng, CHEN Chongcheng. Automatic classification and vectorization of road markings from mobile laser point clouds [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1251-1265. |
[12] | FANG Lina, SHEN Guixi, YOU Zhilong, GUO Yingya, FU Huasheng, ZHAO Zhiyuan, CHEN Chongcheng. A joint network of point cloud and multiple views for roadside objects recognition from mobile laser point clouds [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(11): 1558-1573. |
[13] | LI Cailin, WANG Zhiyong, YU Lulu, GUO Baoyun. Geometric registration of close-range optical image and terrestrial laser point cloud constrained by nearest surface [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(8): 1014-1022. |
[14] | LI Daoji, GUO Haitao, LU Jun, ZHAO Chuan, LIN Yuzhun, YU Donghang. A remote sensing image classification procedure based on multilevel attention fusion U-Net [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(8): 1051-1064. |
[15] | LI Xue, ZHANG Li, WANG Qingdong, AI Haibin. Multi-temporal remote sensing imagery semantic segmentation color consistency adversarial network [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(11): 1473-1484. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||