Acta Geodaetica et Cartographica Sinica ›› 2025, Vol. 54 ›› Issue (1): 136-153.doi: 10.11947/j.AGCS.2025.20240299
• Photogrammetry and Remote Sensing • Previous Articles
Liangxiong GONG1(
), Xinghua LI2(
), Yuanming CHENG3, Xingyou ZHAO1, Renping XIE4, Honggen WANG1
Received:2024-07-19
Revised:2024-12-12
Published:2025-02-17
Contact:
Xinghua LI
E-mail:1021386774@qq.com;lixinghua5540@whu.edu.cn
About author:GONG Liangxiong (1991—), male, master, senior engineer, majors in intelligent interpretation of remote sensing imagery. E-mail: 1021386774@qq.com
Supported by:CLC Number:
Liangxiong GONG, Xinghua LI, Yuanming CHENG, Xingyou ZHAO, Renping XIE, Honggen WANG. A lightweight remote sensing images change detection network utilizing spatio-temporal difference enhancement and adaptive feature fusion[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 136-153.
Tab. 1
Comparison of metrics for different backbone networks on different datasets"
| 主干网络 | 主干网络复杂度嵌入后网络复杂度 | WHU-CD/(%) | LEVIR-CD/(%) | SYSU-CD/(%) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 参数量/M | FLOPs/G | 参数量/M | FLOPs/G | IoU | F1值 | OA | IoU | F1值 | OA | IoU | F1值 | OA | |
| Res Net18 | 11.18 | 19.05 | 13.44 | 22.31 | 77.12 | 87.08 | 98.83 | 78.61 | 88.02 | 98.85 | 67.23 | 80.40 | 91.23 |
| Res Net34 | 21.28 | 38.43 | 23.55 | 41.69 | 72.08 | 83.78 | 98.49 | 79.53 | 88.60 | 98.89 | 66.69 | 80.01 | 91.21 |
| V3-Small | 1.14 | 1.35 | 1.73 | 2.71 | 78.34 | 87.86 | 98.92 | 76.93 | 86.96 | 98.75 | 65.92 | 79.46 | 90.99 |
| V3-Large | 3.41 | 5.79 | 5.67 | 9.05 | 80.59 | 89.25 | 99.05 | 81.23 | 89.65 | 98.96 | 69.46 | 81.97 | 91.78 |
| Swin-S | 48.76 | 89.13 | 32.51 | 51.28 | 83.04 | 90.73 | 99.22 | 82.96 | 91.07 | 99.11 | 68.27 | 81.14 | 91.48 |
| Swin-B | 86.64 | 158.3 | 95.52 | 167.01 | 80.50 | 89.20 | 99.04 | 81.39 | 89.74 | 98.97 | 65.48 | 79.14 | 90.52 |
| Repvit_m1_1 | 7.77 | 14.37 | 10.04 | 17.63 | 79.44 | 88.54 | 98.99 | 80.33 | 89.09 | 98.92 | 67.27 | 80.43 | 91.26 |
| Repvit_m1_5 | 13.62 | 24.43 | 15.88 | 27.69 | 75.54 | 86.06 | 98.77 | 78.22 | 87.78 | 98.83 | 64.70 | 78.57 | 90.69 |
Tab. 2
Comparison of indicators for different loss function combinations on different datasets"
| 损失函数 | WHU-CD | LEVIR-CD | SYSU-CD | SECOND | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| IoU | F1值 | OA | IoU | F1值 | OA | IoU | F1值 | OA | IoU | F1值 | OA | |
| BCE loss+Dice loss | 78.88 | 88.19 | 98.93 | 80.74 | 89.35 | 98.95 | 69.55 | 82.04 | 91.79 | 58.38 | 73.72 | 94.69 |
| Focal loss+Dice loss | 80.59 | 89.25 | 99.05 | 81.23 | 89.65 | 98.96 | 69.46 | 81.97 | 91.78 | 58.93 | 74.16 | 94.67 |
Tab. 3
Comparison of indicators for different models on different datasets"
| 网络模型 | 网络复杂度 | WHU-CD/(%) | LEVIR-CD/(%) | SYSU-CD/(%) | SECOND/(%) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 参数量/M | FLOPs/G | IoU | F1值 | OA | IoU | F1值 | OA | IoU | F1值 | OA | IoU | F1值 | OA | |
| Tiny-CD | 0.29 | 6.18 | 66.34 | 79.76 | 97.91 | 82.16 | 90.21 | 99.02 | 65.10 | 78.86 | 90.31 | 57.20 | 72.78 | 93.95 |
| RFANet | 2.86 | 12.65 | 73.28 | 84.58 | 98.52 | 81.11 | 89.57 | 98.95 | 65.61 | 79.24 | 90.53 | 56.51 | 72.22 | 94.39 |
| FC-Siam-diff | 1.35 | 18.91 | 64.05 | 78.09 | 97.73 | 73.41 | 84.66 | 98.49 | 65.35 | 79.04 | 90.79 | 50.42 | 67.04 | 93.44 |
| SNUNet | 12.03 | 219.33 | 71.59 | 83.45 | 98.40 | 81.33 | 89.49 | 98.96 | 65.64 | 79.25 | 90.71 | 55.04 | 71.00 | 94.00 |
| AMTNet | 16.45 | 58.85 | 72.93 | 84.35 | 98.56 | 79.29 | 88.45 | 98.84 | 60.89 | 75.69 | 88.91 | 51.08 | 67.62 | 93.65 |
| ChangeFormer | 29.75 | 84.73 | 70.05 | 82.39 | 98.28 | 79.80 | 88.76 | 98.87 | 63.90 | 77.97 | 89.40 | 51.10 | 67.64 | 93.20 |
| BIT | 11.47 | 105.24 | 72.49 | 84.11 | 98.45 | 80.62 | 89.27 | 98.92 | 63.72 | 77.30 | 89.18 | 56.79 | 72.44 | 94.45 |
| TFI-GR | 27.78 | 38.96 | 76.65 | 86.70 | 98.78 | 80.66 | 89.29 | 98.96 | 67.84 | 81.00 | 91.34 | 55.42 | 71.32 | 93.99 |
| CDNeXt | 39.42 | 64.33 | 76.53 | 86.53 | 98.73 | 80.77 | 89.36 | 98.94 | 67.14 | 80.34 | 91.16 | 56.50 | 72.20 | 94.29 |
| DMINet | 6.24 | 59.49 | 78.04 | 87.76 | 98.93 | 80.25 | 89.04 | 98.92 | 67.72 | 80.75 | 91.32 | 57.68 | 73.16 | 94.65 |
| SEAFNet | 5.67 | 9.05 | 80.77 | 89.36 | 99.06 | 82.74 | 90.73 | 99.08 | 70.64 | 82.76 | 92.16 | 59.79 | 74.83 | 94.76 |
Tab. 4
Results of ablation experiments on different datasets using different branches"
| 分支名称 | WHU-CD/(%) | LEVIR-CD/(%) | SYSU-CD/(%) | SECOND/(%) | 网络复杂度 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 分支1 | 分支2 | IoU | F1值 | OA | IoU | F1值 | OA | IoU | F1值 | OA | IoU | F1值 | OA | 参数量/M | FLOPs/G |
| × | × | 74.77 | 85.56 | 98.77 | 71.25 | 83.21 | 98.49 | 60.55 | 75.43 | 89.92 | 49.91 | 66.59 | 93.42 | 3.57 | 8.79 |
| × | √ | 76.35 | 86.59 | 98.76 | 73.58 | 84.78 | 98.59 | 64.69 | 78.56 | 90.67 | 50.83 | 67.40 | 93.82 | 3.55 | 8.77 |
| √ | × | 76.04 | 86.39 | 98.88 | 73.98 | 85.04 | 98.45 | 63.60 | 77.75 | 90.49 | 51.34 | 67.84 | 93.49 | 5.56 | 9.06 |
| √ | √ | 77.60 | 87.39 | 98.93 | 77.76 | 87.49 | 98.72 | 65.31 | 79.01 | 90.69 | 52.45 | 68.81 | 93.69 | 5.56 | 9.06 |
Tab. 5
Results of ablation experiments on different datasets using weighted parameters"
| 权重参数 | WHU-CD/(%) | LEVIR-CD/(%) | SYSU-CD/(%) | SECOND/(%) | 网络复杂度 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| IoU | F1值 | OA | IoU | F1值 | OA | IoU | F1值 | OA | IoU | F1值 | OA | 参数量/M | FLOPs/G | |
| × | 76.69 | 86.81 | 98.94 | 77.29 | 87.17 | 98.73 | 66.40 | 79.81 | 91.35 | 53.88 | 70.03 | 94.21 | 3.67 | 8.72 |
| √ | 77.29 | 87.19 | 98.90 | 77.78 | 87.52 | 98.74 | 66.88 | 80.15 | 91.31 | 54.61 | 70.64 | 94.28 | 3.67 | 8.72 |
Tab. 6
Results of ablation experiments on different datasets using different modules"
| 模块名称 | WHU-CD/(%) | LEVIR-CD/(%) | SYSU-CD/(%) | SECOND/(%) | 网络复杂度 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| STDEM | ERRM | SAPM | IoU | F1值 | OA | IoU | F1值 | OA | IoU | F1值 | OA | IoU | F1值 | OA | 参数量/M | FLOPs/G |
| √ | √ | √ | 80.59 | 89.25 | 99.05 | 81.23 | 89.65 | 98.96 | 69.46 | 81.97 | 91.78 | 58.93 | 74.16 | 94.67 | 5.67 | 9.05 |
| × | √ | √ | 78.59 | 88.01 | 98.92 | 79.57 | 88.62 | 98.89 | 67.73 | 80.76 | 91.52 | 54.66 | 70.68 | 94.35 | 3.68 | 8.78 |
| √ | × | √ | 80.43 | 89.16 | 99.04 | 79.87 | 88.81 | 98.89 | 68.57 | 81.35 | 91.63 | 57.17 | 72.75 | 94.19 | 5.67 | 8.99 |
| √ | √ | × | 78.79 | 88.14 | 99.02 | 78.17 | 87.75 | 98.79 | 65.76 | 79.35 | 90.92 | 53.52 | 69.72 | 92.96 | 5.57 | 9.13 |
| [1] | 刘宣广, 李蒙蒙, 汪小钦, 等. 基于面向对象孪生神经网络的高分辨率遥感影像建筑物变化检测[J]. 遥感学报, 2024, 28(2): 437-454. |
| LIU Xuanguang, LI Mengmeng, WANG Xiaoqin, et al. Use of object-based siamese neural network to build change detection from very high resolution remote-sensing images[J]. National Remote Sensing Bulletin, 2024, 28(2): 437-454. | |
| [2] |
王超, 王帅, 陈晓, 等. 联合UNet++和多级差分模块的多源光学遥感影像对象级变化检测[J]. 测绘学报, 2023, 52(2): 283-296. DOI:.
doi: 10.11947/j.AGCS.2023.20220202 |
|
WANG Chao, WANG Shuai, CHEN Xiao, et al. Object-level change detection of multi-sensor optical remote sensing images combined with UNet++ and multi-level difference module[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 283-296. DOI:.
doi: 10.11947/j.AGCS.2023.20220202 |
|
| [3] | 柳思聪, 都科丞, 郑永杰, 等. 人工智能时代的遥感变化检测技术:继承、发展与挑战[J]. 遥感学报, 2023, 27(9): 1975-1987. |
| LIU Sicong, DU Kecheng, ZHENG Yongjie, et al. Remote sensing change detection technology in the era of artificial intelligence: inheritance, development and challenges[J]. National Remote Sensing Bulletin, 2023, 27(9): 1975-1987. | |
| [4] | 徐炜, 王驿飞, 张艳, 等. 基于双边滤波和小目标抑制的异源遥感变化检测[J]. 电子测量技术, 2021, 44(17): 165-172. |
| XU Wei, WANG Yifei, ZHANG Yan, et al. Heterogeneous remote sensing image change detection based on bilateral filtering and small target suppression[J]. Electronic Measurement Technology, 2021, 44(17): 165-172. | |
| [5] | 邱云飞, 屈照阳, 方立. 结合差异增强的异源遥感影像变化检测网络[J]. 测绘科学, 2024, 49(1): 153-162. |
| QIU Yunfei, QU Zhaoyang, FANG Li. Change detection network for heterogeneous remote sensing images with differential augmentation[J]. Science of Surveying and Mapping, 2024, 49(1): 153-162. | |
| [6] | 张玉沙, 黄岩, 谭琨, 等. 基于多分类器集成和对象的城市典型地物要素变化检测——以ZY-3影像为例[J]. 地理与地理信息科学, 2018, 34(3): 54-60,130. |
| ZHANG Yusha, HUANG Yan, TAN Kun, et al. Change detection of urban typical features based on multi-classifier ensemble and objeets: taking ZY-3 as an example[J]. 2018, 34(3): 54-60,130. | |
| [7] | 张晗, 倪维平, 严卫东, 等. 利用分形和多尺度分析的中低分辨率SAR图像变化检测[J]. 武汉大学学报(信息科学版), 2016, 41(5): 642-648. |
| ZHANG Han, NI Weiping, YAN Weidong, et al. Mid and low resolution SAR image change detection based on fractal and multi-scale analysis[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 642-648. | |
| [8] | 赵元昊, 孙根云, 张爱竹, 等. 基于典型相关分析的遥感影像非监督超像素级变化检测[J]. 遥感学报, 2024, 28(4): 1025-1040. |
| ZHAO Yuanhao, SUN Genyun, ZHANG Aizhu, et al. Unsupervised super pixel level change detection based on canonical correlation analysis[J]. National Remote Sensing Bulletin, 2024, 28(4): 1025-1040. | |
| [9] | ZHOU Zhenjin, MA Lei, FU Tengyun, et al. Change detection in coral reef environment using high-resolution images: comparison of object-based and pixel-based paradigms[J]. International Journal of Geo-Information, 2018, 7(11): 441. |
| [10] | 胡永月, 肖鹏峰, 冯学智, 等. 面向对象变化检测中多时相图像分割模式影响评价[J]. 南京大学学报(自然科学), 2015, 51(5): 1049-1057. |
| HU Yongyue, XIAO Pengfeng, FENG Xuezhi, et al. Evaluating the effectiveness of multi-temporal image segmentation on object-based change detection[J]. Journal of Nanjing University (Natural Sciences), 2015, 51(5): 1049-1057. | |
| [11] | 韩潇冰. 高分辨率遥感影像“像素-目标-场景”的深度理解方法研究[D]. 武汉: 武汉大学, 2020. |
| HAN Xiaobing. “Pixel-obiect-scene” level deep understanding for high spatial resolution remote sensing imagery[D]. Wuhan: Wuhan University, 2020. | |
| [12] | WU Chen, ZHANG Liangpei, DU Bo. Kernel slow feature analysis for scene change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 2367-2384. |
| [13] | CHEN Jie, HUANG Haozhe, PENG Jian, et al. Contextual information-preserved architecture learning for remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14. |
| [14] | WANG Min, WANG Peidong. CFM-UNet: a joint CNN and transformer network via cross feature modulation for remote sensing images segmentation[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(4): 40-47. |
| [15] | ZHU Qiqi, GUO Xi, DENG Weihuan, et al. Land-use/land-cover change detection based on a siamese global learning framework for high spatial resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 184: 63-78. |
| [16] | CHEN Zhanlong, LI Shuangjiang, XU Yongyang, et al. Correg-Yolov3: a method for dense buildings detection in high-resolution remote sensing images[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(2): 51-61. |
| [17] | CODEGONI A, LOMBARDI G, FERRARI A. Tinycd: a (not so) deep learning model for change detection[J]. Neural Computing and Applications, 2023, 35(11): 8471-8486. |
| [18] | YANG Haiping, CHEN Yuanyuan, WU Wei, et al. A lightweight siamese neural network for building change detection using remote sensing images[J]. Remote Sensing, 2023, 15(4): 928. |
| [19] | YOU Zhihui, CHEN Sibao, WANG Jiaxin, et al. Robust feature aggregation network for lightweight and effective remote sensing image change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 215: 31-43. |
| [20] | HUANG Yanyuan, LI Xinghua, DU Zhengshun, et al. Spatiotemporal enhancement and interlevel fusion network for remote sensing images change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-14. |
| [21] | BANDARA W G C, PATEL V M. A transformer-based siamese network for change detection[C]//Proceedings of 2022 IEEE International Geoscience and Remote Sensing Symposium. Malaysia: IEEE, 2022: 207-210. |
| [22] | ZHANG Cui, WANG Liejun, CHENG Shuli, et al. SwinSUNet: pure transformer network for remote sensing image change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-13. |
| [23] | WANG Decheng, CHEN Xiangning, JIANG Mingyong, et al. ADS-Net: an attention-based deeply supervised network for remote sensing image change detection[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 101: 102348. |
| [24] | 张建兵, 严泽枭, 马淑芳. 用于遥感影像建筑物变化检测的多尺度交叉对偶注意力网络[J]. 地球信息科学学报, 2023, 25(12): 2487-2500. |
| ZHANG Jianbing, YAN Zexiao, MA Shufang. Multi-scale cross dual attention network for building change detection in remote sensing images[J]. Geo-Information Science, 2023, 25(12): 2487-2500. | |
| [25] | LI Qingyang, ZHONG Ruofei, DU Xin, et al. TransUNetCD: a hybrid transformer network for change detection in optical remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-9. |
| [26] | LIANG Shike, HUA Zhen, LI Jinjiang. Enhanced self-attention network for remote sensing building change detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 4900-4915. |
| [27] | CHEN Hongruixuan, SONG Jian, HAN Chengxi, et al. ChangeMamba: remote sensing change detection with spatiotemporal state space model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-20. |
| [28] | CAYE DAUDT R, LE SAUX B, BOULCH A. Fully convolutional siamese networks for change detection[C]//Proceedings of the 25th IEEE International Conference on Image Processing. Athens: IEEE, 2018: 4063-4067. |
| [29] | LI Shujun, HUO Lianzhi. Remote sensing image change detection based on fully convolutional network with pyramid attention[C]//Proceedings of 2021 IEEE International Geoscience and Remote Sensing Symposium. Brussels: IEEE, 2021: 4352-4355. |
| [30] |
姜明, 张新长, 孙颖, 等. 全尺度特征聚合的高分辨率遥感影像变化检测网络[J]. 测绘学报, 2023, 52(10): 1738-1748. DOI:.
doi: 10.11947/j.AGCS.2023.20220505 |
|
JIANG Ming, ZHANG Xinchang, SUN Ying, et al. Full-scale feature aggregation network for high-resolution remote sensing image change detection[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(10): 1738-1748. DOI:.
doi: 10.11947/j.AGCS.2023.20220505 |
|
| [31] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. |
| [32] | HOWARD A, SANDLER M, CHEN Bo, et al. Searching for MobileNetV3[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 1314-1324. |
| [33] | LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 9992-10002. |
| [34] | WANG Ao, CHEN Hui, Lin Zijia, et al. RepViT: revisiting mobile CNN from ViT perspective[C]//Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 15909-15920. |
| [35] | FU Jun, LIU Jing, JIANG Jie, et al. Scene segmentation with dual relation-aware attention network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(6): 2547-2560. |
| [36] | WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539. |
| [37] | LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944. |
| [38] | LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768. |
| [39] | JI Shunping, WEI Shiqing, LU Meng. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1): 574-586. |
| [40] | CHEN Hao, SHI Zhenwei. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10): 1662. |
| [41] | SHI Qian, LIU Mengxi, LI Shengchen, et al. A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-16. |
| [42] | YANG Kunping, XIA Guisong, LIU Zicheng, et al. A symmetric siamese networks for semantic change detection in aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-18. |
| [43] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis & AMP, Machine Intelligence, 2020, 42(2): 318-327. |
| [44] | SUDRE H C, LI W Q, TOM V, et al. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations[C]//Proceedings of 2017 Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Quebec City: Springer, 2017: 240-248. |
| [45] | FANG Sheng, LI Kaiyu, SHAO Jinyuan, et al. SNUNet-CD: a densely connected siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. |
| [46] | CHEN Hao, QI Zipeng, SHI Zhenwei. Remote sensing image change detection with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14. |
| [47] | LIU Wei, LIN Yiyuan, LIU Weijia, et al. An attention-based multiscale transformer network for remote sensing image change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 202: 599-609. |
| [48] | LI Zhenglai, TANG Chang, WANG Lizhe. Remote sensing change detection via temporal feature interaction and guided refinement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-11. |
| [49] | FENG Yuchao, JIANG Jiawei, XU Honghui, et al. Change detection on remote sensing images using dual-branch multilevel intertemporal network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-5. |
| [50] | WEI Jinjiang, SUN Kaimin, LI Wenzhuo, et al. Robust change detection for remote sensing images based on temporospatial interactive attention module[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 128: 103767. |
| [1] | Yanjun WANG, Xuchao TANG, Cheng WANG, Hengfan CAI. Urban and rural road surface extraction network based on road topological correlation features [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 75-89. |
| [2] | Xin YAN, Li SHEN, Junjie PAN, Yanshuai DAI, Jicheng WANG, Xiaoli ZHENG, Zhi-lin LI. Weakly supervised building change detection integrating multi-scale feature fusion and spatial refinement for high resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1586-1597. |
| [3] | Zhiwei XIE, Shuaizhi ZHAI, Fengyuan ZHANG, Min CHEN, Lishuang SUN. Object-oriented high-resolution image classification using inductive graph neural networks [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1610-1623. |
| [4] | Tao XU, Yuanwei YANG, Xianjun GAO, Zhiwei WANG, Yue PAN, Shaohua LI, Lei XU, Yanjun WANG, Bo LIU, Jing YU, Fengmin WU, Haoyu SUN. Integrated graph convolution and multi-scale features for the overhead catenary system point cloud semantic segmentation [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1624-1633. |
| [5] | Xiaogang NING, Hanchao ZHANG, Ruiqian ZHANG. Practical framework and methodology for high-performance intelligent invariant detection in remote sensing imagery [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1098-1112. |
| [6] | Yanan JIANG, Linfeng ZHENG, Qiang XU, Minggao TANG, Xing ZHU. Step-like displacement prediction of landslides guided by deformation mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1128-1139. |
| [7] | Haiyan GU, Yi YANG, Haitao LI, Lijian SUN, Shaopeng DING, Shiqi LIU. Dynamic construction of high-resolution remote sensing image sample datasets and intelligent interpretation applications [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1165-1179. |
| [8] | Daifeng PENG, Chenchen ZHAI, Dingwei ZHOU, Yongjun ZHANG, Haiyan GUAN, Yufu ZANG. High-resolution optical images change detection based on global information enhancement by pyramid semantic token [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1195-1211. |
| [9] | Jicheng WANG, Anmei GUO, Li SHEN, Tian LAN, Zhu XU, Zhilin LI. Multi-level contrastive learning for weakly supervised extraction of urban solid wastes dump from high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1212-1223. |
| [10] | Shaopeng DING, Xiushan LU, Rufei LIU, Yi YANG, Haiyan GU, Haitao LI. Building change detection method combining object feature guidance and multiple attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1224-1235. |
| [11] | Changqi JI, Zhaojie GUO, Haili SUN, Ruofei ZHONG. Location and rapid detection method of water leakage in subway tunnels based on mobile laser scanning [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1236-1250. |
| [12] | Shiyan PANG, Jingjing HAO, Zhiqi ZUO, Jingjing LAN, Xiangyun HU. A high-resolution remote sensing images change detection method via the integration of dense connections and self-attention mechanisms [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2244-2253. |
| [13] | Jinqi ZHAO, Yuxuan LI, Zirong LIU, Qing AN, Shiyu SONG, Yufen NIU. Flood change detection method using optimized similarity measurement function with temporal-spatial-polarized SAR information [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2375-2390. |
| [14] | JIANG Baode, HANG Wei, XU Shaofen, WU Yong. Multi-scale building instance refinement extraction from remote sensing images by fusing with decentralized adaptive attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1504-1514. |
| [15] | WEI Chuntao, GONG Cheng, ZHOU Yongxu. A change detection network with joint spatial constraints and differential feature aggregation [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1538-1547. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||