Acta Geodaetica et Cartographica Sinica ›› 2019, Vol. 48 ›› Issue (8): 1046-1058.doi: 10.11947/j.AGCS.2019.20180471
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
YU Donghang, GUO Haitao, ZHANG Baoming, ZHAO Chuan, LU Jun
Received:
2018-10-15
Revised:
2019-02-25
Online:
2019-08-20
Published:
2019-08-27
Supported by:
CLC Number:
YU Donghang, GUO Haitao, ZHANG Baoming, ZHAO Chuan, LU Jun. Aircraft detection in remote sensing images using cascade convolutional neural networks[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8): 1046-1058.
[1] 邓志鹏, 孙浩, 雷琳, 等. 基于多尺度形变特征卷积网络的高分辨率遥感影像目标检测[J]. 测绘学报, 2018, 47(9):1216-1227. DOI:10.11947/j.AGCS.2018.20170595. DENG Zhipeng, SUN Hao, LEI Lin, et al. Object detection in remote sensing imagery with multi-scale deformable convolutional networks[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9):1216-1227. DOI:10.11947/j.AGCS.2018.20170595. [2] 曾接贤, 付俊, 符祥. 特征点和不变矩结合的遥感图像飞机目标识别[J]. 中国图象图形学报, 2014, 19(4):592-602. ZENG Jiexian, FU Jun, FU Xiang. Aircraft target recognition in remote sensing images based on distribution of the feature points and invariant moments[J]. Journal of Image and Graphics, 2014, 19(4):592-602. [3] HSIEH J W, CHEN J M, CHUANG C H, et al. Aircraft type recognition in satellite images[J]. IEE Proceedings-Vision, Image and Signal Processing, 2005, 152(3):307-315. [4] ZHAO An, FU Kun, SUN Hao, et al. An effective method based on ACF for aircraft detection in remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5):744-748. [5] LEI Zhen, FANG Tao, HUO Hong, et al. Rotation-invariant object detection of remotely sensed images based on texton forest and Hough voting[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(4):1206-1217. DOI:10.1109/TGRS.2011.2166966. [6] 王树国, 黄勇杰, 张生. 可见光图像中飞机目标的特征选择及提取[J]. 哈尔滨工业大学学报, 2010, 42(7):1056-1059. WANG Shuguo, HUANG Yongjie, ZHANG Sheng. Selection and extraction of features of aircraft in optical image[J]. Journal of Harbin Institute of Technology, 2010, 42(7):1056-1059. [7] 王文胜. 宽幅光学遥感图像舰船飞机目标检测识别技术研究[D]. 长春:中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2018. WANG Wensheng. Research on technology of ship and aircraft targets recognition from large-field optical remote sensing image[D]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2018. [8] WANG Wensheng, NIE Ting, FU Tianjiao, et al. A novel method of aircraft detection based on high-resolution panchromatic optical remote sensing images[J]. Sensors, 2017, 17(5):1047. DOI:10.3390/s17051047. [9] LI Yu, SUN Xian, WANG Hongqi, et al. Automatic target detection in high-resolution remote sensing images using a contour-based spatial model[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5):886-890. DOI:10.1109/LGRS.2012.2183337. [10] SUN Hao, SUN Xian, WANG Hongqi, et al. Automatic target detection in high-resolution remote sensing images using spatial sparse coding bag-of-words model[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1):109-113. [11] BAI Xiao, ZHANG Huigang, ZHOU Jun. VHR object detection based on structural feature extraction and query expansion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10):6508-6520. DOI:10.1109/TGRS.2013.2296782. [12] 岳伍军. 基于光学遥感图像的飞机目标检测算法研究[D]. 成都:西南交通大学, 2014. YUE Wujun. Research on airplane and target detection algorithms in optical remote sensing imagery[D]. Chengdu:Southwest Jiaotong University, 2014. [13] 吴喆, 曾接贤, 高琪琪. 显著图和多特征结合的遥感图像飞机目标识别[J]. 中国图象图形学报, 2017, 22(4):532-541. WU Zhe, ZENG Jiexian, GAO Qiqi. Aircraft target recognition in remote sensing images based on saliency images and multi-feature combination[J]. Journal of Image and Graphics, 2017, 22(4):532-541. [14] ZHANG Libao, ZHANG Yingying. Airport detection and aircraft recognition based on two-layer saliency model in high spatial resolution remote-sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(4):1511-1524. DOI:10.1109/JSTARS.2016.2620900. [15] LONG Yang, GONG Yiping, XIAO Zhifeng, et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5):2486-2498. DOI:10.1109/TGRS.2016.2645610. [16] 姚相坤, 万里红, 霍宏, 等. 基于多结构卷积神经网络的高分遥感影像飞机目标检测[J]. 计算机工程, 2017, 43(1):259-267. YAO Xiangkun, WAN Lihong, HUO Hong, et al. Airplane object detection in high resolution remote sensing imagery based on multi-structure convolutional neural network[J]. Computer Engineering, 2017, 43(1):259-267. [17] 刘欢. 基于高分辨率光学遥感影像的特定目标检测算法研究[D]. 哈尔滨:哈尔滨工业大学, 2017. LIU Huan. Research on detection algorithm for specific objects in high-resolution optical remote sensing images[D]. Harbin:Harbin Institute of Technology, 2017. [18] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2015:91-99. [19] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV:IEEE, 2016:779-788. [20] 洪韬. 基于光学遥感影像的特定目标检测及识别[D]. 成都:电子科技大学, 2018. HONG Tao. Specific object detection and recognition in optical remote sensing image[D]. Chengdu:University of Electronic Science and Technology of China, 2018. [21] 辛鹏, 许悦雷, 唐红, 等. 全卷积网络多层特征融合的飞机快速检测[J]. 光学学报, 2018, 38(3):0315003. XIN Peng, XU Yuelei, TANG Hong, et al. Fast airplane detection based on multi-layer feature fusion of fully convolutional networks[J]. Acta Optica Sinica, 2018, 38(3):0315003. [22] HAN Xiaobing, ZHONG Yanfei, ZHANG Liangpei. An efficient and robust integrated geospatial object detection framework for high spatial resolution remote sensing imagery[J]. Remote Sensing, 2017, 9(7):666. DOI:10.3390/rs9070666. [23] RADOVIC M, ADARKWA O, WANG Qiaosong. Object recognition in aerial images using convolutional neural networks[J]. Journal of Imaging, 2017, 3(2):21. DOI:10.3390/jimaging3020021. [24] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014. [25] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV:IEEE, 2016:770-778. [26] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam:Springer International Publishing, 2016:21-37. [27] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai, HI:IEEE, 2001. [28] LI Haoxiang, LIN Zhe, SHEN Xiaohui, et al. A convolutional neural network cascade for face detection[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA:IEEE, 2015:5325-5334. [29] ZHANG Kaipeng, ZHANG Zhanpeng, LI Zhifeng, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10):1499-1503. DOI:10.1109/LSP.2016.2603342. [30] LIN Ming, CHEN Qiang, YAN Shuicheng. Network in network[J]. arXiv:1312.4400, 2013. [31] SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV:IEEE, 2016:761-769. [32] ZHU Haigang, CHEN Xiaogang, DAI Weiqun, et al. Orientation robust object detection in aerial images using deep convolutional neural network[C]//Proceedings of 2015 IEEE International Conference on Image Processing. Quebec City, QC:IEEE, 2015:3735-3739. DOI:10.1109/ICIP.2015.7351502. [33] XIA Guisong, BAI Xiang, DING Jian, et al. DOTA:a large-scale dataset for object detection in aerial images[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT:IEEE, 2018:3974-3983. [34] REDMON J, FARHADI A. YOLO9000:better, faster, stronger[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI:IEEE, 2017:6517-6525. [35] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice:IEEE, 2017:2999-3007. [36] HOWARD A G, ZHU Menglong, CHEN Bo, et al. MobileNets:efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017. [37] ZHANG Xiangyu, ZHOU Xinyu, LIN Mengxiao, et al. Shufflenet:an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT:IEEE, 2018:6848-6856. |
[1] | ZHANG Zuxun, JIANG Huiwei, PANG Shiyan, HU Xiangyun. Review and prospect in change detection of multi-temporal remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1091-1107. |
[2] | ZHANG Liangpei, HE Jiang, YANG Qianqian, XIAO Yi, YUAN Qiangqiang. Data-driven multi-source remote sensing data fusion: progress and challenges [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1317-1337. |
[3] | CHENG Tao, ZHANG Yang, James Haworth. Network and graph-based SpaceTimeAI: conception, method and applications [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1629-1639. |
[4] | GONG Jianya, HUAN Linxi, ZHENG Xianwei. Deep learning interpretability analysis methods in image interpretation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 873-884. |
[5] | ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885-896. |
[6] | LI Rongxing, LI Guojun, FENG Tiantian, SHEN Qiang, QIAO Gang, YE Zhen, XIA Menglian. A review of Antarctic ice velocity products and methods based on optical remote sensing satellite images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 953-963. |
[7] | CHENG Jiehai, HUANG Zhongyi, WANG Jianru, HE Shi. The automatic determination method of the optimal segmentation result of high-spatial resolution remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 658-667. |
[8] | GONG Jianya, ZHANG Mi, HU Xiangyun, ZHANG Zhan, LI Yansheng, Jiang Liangcun. The design of deep learning framework and model for intelligent remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 475-487. |
[9] | MAO Wenjing, WANG Weilin, JIAO Limin, LIU Anbao. Continuous spatial coverage PM2.5 concentration forecast in China based on deep learning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 361-372. |
[10] | JIN Fei, GUAN Kai, LIU Zhi, HAN Jiarong, RUI Jie, LI Qinggao. A performing analysis of unsupervised dense matching feature extraction networks [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 426-436. |
[11] | LIAO Zhanghui, JIANG Chuang. Fast dehaze of high resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 446-456. |
[12] | HE Zhimeng, DING Haiyong, AN Bingqi. E-Unet: a atrous convolution-based neural network for building extraction from high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 457-467. |
[13] | HONG Liang, FENG Yafei, PENG Shuangyun, CHU Sensen. Classification of high spatial resolution remote sensing imagery based on object-oriented multi-scale weighted sparse representation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 224-237. |
[14] | YU Junpeng, WU Weidong, SUN Jiaming, MAN Yiyun, SHEN Gang. A RFM adjustment method for satellite remote sensing image with Fourier compensation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 127-134. |
[15] | ZHANG Yuxin, YAN Qingsong, DENG Fei. Multi-path RSU network method for high-resolution remote sensing image building extraction [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 135-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||