Acta Geodaetica et Cartographica Sinica ›› 2025, Vol. 54 ›› Issue (7): 1332-1345.doi: 10.11947/j.AGCS.2025.20240337
• Cartography and Geoinformation • Previous Articles Next Articles
Yaqing WANG1,2,3(
), Zhonghui WANG1,2,3(
)
Received:2024-08-19
Revised:2025-05-06
Online:2025-08-18
Published:2025-08-18
Contact:
Zhonghui WANG
E-mail:wyq1584816526@163.com;1449041349@qq.com
About author:WANG Yaqing (2000—), male, postgraduate, majors in map generalization and intelligent processing of map data. E-mail: wyq1584816526@163.com
Supported by:CLC Number:
Yaqing WANG, Zhonghui WANG. River network automated selection method based on heterogeneous graph convolutional networks[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1332-1345.
| [1] | 王家耀, 王光霞, 江南, 等. 地图学原理与方法[M]. 3版. 北京: 科学出版社, 2023. |
| WANG Jiayao, WANG Guangxia, JIANG Nan, et al. Principles and methods of cartography[M]. 3rd ed. Beijing: Science Press, 2023. | |
| [2] | LIU Jingnan, ZHAN Jiao, GUO Chi, et al. Data logic structure and key technologies on intelligent high-precision map[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3): 1-17. |
| [3] | STOTER J, POST M, VANALTENA V, et al. Fully automated generalization of a 1∶50k map from 1∶10k data[J]. Cartography and Geographic Information Science, 2014, 41(1): 1-13. |
| [4] | 何宗宜. 地图数据处理模型的原理与方法[M]. 武汉: 武汉大学出版社, 2004. |
| HE Zongyi. Elements and methods of model for cartographical data processing[M]. Wuhan: Wuhan University Press, 2004. | |
| [5] | 张青年. 顾及密度差异的河系简化[J]. 测绘学报, 2006, 35(2): 191-196. |
| ZHANG Qingnian. Generalization of drainage network with density differences[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(2): 191-196. | |
| [6] | 张园玉, 李霖, 金玉平, 等. 基于图论的树状河系结构化绘制模型研究[J]. 武汉大学学报(信息科学版), 2004, 29(6): 537-539, 543. |
| ZHANG Yuanyu, LI Lin, JIN Yuping, et al. Structured design of dendritic river networks based on graph[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 537-539, 543. | |
| [7] | 武芳, 谭笑, 翟仁健, 等. 基于知识表达和推理的河网自动选取[J]. 辽宁工程技术大学学报, 2007, 26(2): 183-186. |
| WU Fang, TAN Xiao, ZHAI Renjian, et al. Automated river selection based on cartographic knowledge representation and reasoning[J]. Journal of Liaoning Technical University, 2007, 26(2): 183-186. | |
| [8] | 谭笑. 基于知识的线状水系要素自动综合研究[D]. 郑州: 信息工程大学, 2005. |
| TAN Xiao. Research of linear drainage features automated generalizaton based on knowledge[D]. Zhengzhou: Information Engineering University, 2005. | |
| [9] | 邵黎霞, 何宗宜, 艾自兴, 等. 基于BP神经网络的河系自动综合研究[J]. 武汉大学学报(信息科学版), 2004, 29(6): 555-557. |
| SHAO Lixia, HE Zongyi, AI Zixing, et al. Automatic generalization of river network based on BP neural network techniques[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 555-557. | |
| [10] | 翟仁健, 武芳, 邓红艳, 等. 基于遗传多目标优化的人工河网自动选取模型[J]. 测绘学报, 2008, 37(1): 108-113. |
| ZHAI Renjian, WU Fang, DENG Hongyan, et al. An automated selection model of ditch based on multi-objective optimization by genetic algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(1): 108-113. | |
| [11] | SEN A, GOKGOZ T. An experimental approach for selection/elimination in stream network generalization using support vector machines[J]. Geocarto International, 2015, 30(3): 311-329. |
| [12] | WANG Di, QIAN Haizhong. Graph neural network method for the intelligent selection of river system[J]. Geocarto International, 2023, 38(1): 2252762. |
| [13] | YU Huafei, AI Tinghua, YANG Min, et al. Integrating domain knowledge and graph convolutional neural networks to support river network selection[J]. Transactions in GIS, 2023, 27(7): 1898-1927. |
| [14] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2024-03-04]. https://arxiv.org/abs/1609.02907v4. |
| [15] | HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[EB/OL]. [2024-03-04]. https://arxiv.org/abs/1706.02216v4. |
| [16] | 张瑞. 面向异构图节点分类问题的图卷积网络研究[D]. 上海: 华东师范大学, 2023. |
| ZHANG Rui. Graph convolutional networks for node classification tasks on heterophilic graphs[D]. Shanghai: East China Normal University, 2023. | |
| [17] | SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 15th European Semantic Web Conference. Berlin: Springer, 2018: 593-607. |
| [18] | 贾香恩, 董一鸿, 朱锋, 等. 异构图卷积网络研究进展[J]. 计算机工程与应用, 2021, 57(9): 36-49. |
| JIA Xiang'en, DONG Yihong, ZHU Feng, et al. Research progress of heterogeneous graph convolutional networks[J]. Computer Engineering and Applications, 2021, 57(9): 36-49. | |
| [19] | 刘一漩, 张晶, 赵进勇, 等. 赤水河弯曲河段地貌特征参数统计分析[J]. 水生态学杂志, 2022, 43(3): 44-50. |
| LIU Yixuan, ZHANG Jing, ZHAO Jinyong, et al. Statistical analysis of geomorphological parameters in meandering sections of Chishui River[J]. Journal of Hydroecology, 2022, 43(3): 44-50. | |
| [20] | WANG Wenning, YAN Haowen, LU Xiaomin, et al. Drainage pattern recognition method considering local basin shape based on graph neural network[J]. International Journal of Digital Earth, 2023, 16(1): 593-619. |
| [21] | 王文宁. 多形态河系的流域基本单元特征分析、识别及相似度计算[D]. 兰州: 兰州交通大学, 2023. |
| WANG Wenning. Characteristics analysis, recognition, similarity calculation of the catchment basic units for multiple drainage patterns[D]. Lanzhou: Lanzhou Jiatong University, 2023. | |
| [22] | 艾廷华, 刘耀林, 黄亚锋. 河网汇水区域的层次化剖分与地图综合[J]. 测绘学报, 2007, 36(2): 231-236, 243. |
| AI Tinghua, LIU Yaolin, HUANG Yafeng. The hierarchical watershed partitioning and generalization of river network[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(2): 231-236, 243. | |
| [23] | 赵春燕. 水系河网的Horton编码与图形综合研究[D]. 武汉: 武汉大学, 2004. |
| ZHAO Chunyan. Research on horton code and graphic generalization of catchment[D]. Wuhan: Wuhan University, 2004. | |
| [24] | 黄子叶, 王易初, 倪晋仁. 汉江流域河网分级特征研究[J]. 北京大学学报(自然科学版), 2021, 57(2): 351-360. |
| HUANG Ziye, WANG Yichu, NI Jinren. Hierarchical characteristics of river network in Hanjiang basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(2): 351-360. | |
| [25] | 高翔. 基于关系图卷积神经网络的多标签事件预测[J]. 电讯技术, 2023, 63(4): 457-465. |
| GAO Xiang. Multi-label event prediction based on relational graph convolutional neural network[J]. Telecommunication Engineering, 2023, 63(4): 457-465. | |
| [26] | 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755-780. |
| XU Bingbing, CEN Keting, HUANG Junjie, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Computers, 2020, 43(5): 755-780. | |
| [27] | THANAPALASINGAM T, VAN BERKEL L, BLOEM P, et al. Relational graph convolutional networks: a closer look[J]. PeerJ Computer Science, 2022, 8: e1073. |
| [28] | YU Huafei, AI Tinghua, YANG Min, et al. A recognition method for drainage patterns using a graph convolutional network[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 107: 102696. |
| [29] | 刘怀湘, 王兆印. 典型河网形态特征与分布[J]. 水利学报, 2007, 38(11): 1354-1357. |
| LIU Huaixiang, WANG Zhaoyin. Morphological feature and distribution of typical river networks[J]. Journal of Hydraulic Engineering, 2007, 38(11): 1354-1357. | |
| [30] | 杨飞, 王中辉. 河系几何相似性的层次度量方法[J]. 地球信息科学学报, 2021, 23(12): 2139-2150. |
| YANG Fei, WANG Zhonghui. River systems geometric similarity measurement method under hierarchical analysis[J]. Journal of Geo-information Science, 2021, 23(12): 2139-2150. |
| [1] | Nina MENG, Fengmei LI, Xiaodong ZHOU. Data and cognition dual-driven building group generalization results and scale consistency assessment [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1318-1331. |
| [2] | Xiaoya AN, Weiru GUO, Pengxin ZHANG, Xinxin LI, Lei SHI. Ship trajectories clustering method considering similarity in geometric position and mobility features [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1107-1121. |
| [3] | Chao WANG, Tianyu CHEN, Tong ZHANG, Tanvir AHMED, Liqiang JI, Tao XIE, Jiajun YANG, Shuai WANG. Multi-sensor optical remote sensing images change detection based on global differential enhancement module and balance penalty loss [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 873-887. |
| [4] | Qingli LUO, Xueyan LI, Guoman HUANG, Honghui CHEN, Minglong XUE, Jian LI. AOSN: alpha optimal structure network for height estimation from a single SAR image in mountain areas [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 888-898. |
| [5] | Youneng SU, Qing XU, Qun SUN, Xinming ZHU, Fubing ZHANG, Bo LIU. A method for automatic buildings aggregation constrained by proximity edges [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(3): 563-576. |
| [6] | Wei TU, Xiangyuan CHI, Tianhong ZHAO, Jian YANG, Shiping ZHU, Deli CHEN. Multi-view spatio-temporal graph convolutional networks model for urban drainage networks flow prediction [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 334-344. |
| [7] | Zhenghua ZHANG, Guoliang CHEN. A lightweight rotation-invariant network for LiDAR-based place recognition [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 90-103. |
| [8] | Yan SHI, Da WANG, Min DENG, Xuexi YANG. Spatio-temporal anomaly detection: connotation transformation and implementation path from data-driven to knowledge-driven modeling [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1493-1504. |
| [9] | Xin YAN, Li SHEN, Junjie PAN, Yanshuai DAI, Jicheng WANG, Xiaoli ZHENG, Zhi-lin LI. Weakly supervised building change detection integrating multi-scale feature fusion and spatial refinement for high resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1586-1597. |
| [10] | Pengcheng LIU, Hongran MA, Yang ZHOU, Ziqin SHAO. Autoencoder neural network method for curve data compression [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1634-1643. |
| [11] | Jinwei BU, Kegen YU, Qiulan WANG, Linghui LI, Xinyu LIU, Xiaoqing ZUO, Jun CHANG. Deep learning retrieval method for global ocean significant wave height by integrating spaceborne GNSS-R data and multivariable parameters [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1321-1335. |
| [12] | Liming JIANG, Yi SHAO, Zhiwei ZHOU, Peifeng MA, Teng WANG. A review of intelligent InSAR data processing: recent advancements, challenges and prospects [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1037-1056. |
| [13] | Chi GUO, Yang LIU, Yarong LUO, Jingnan LIU, Quan ZHANG. Research progress in the application of image semantic information in visual SLAM [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1057-1076. |
| [14] | Xunqiang GONG, Hongyu WANG, Tieding LU, Wei YOU. A general progressive decomposition long-term prediction network model for high-speed railway bridge pier settlement [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1113-1127. |
| [15] | Haiyan GU, Yi YANG, Haitao LI, Lijian SUN, Shaopeng DING, Shiqi LIU. Dynamic construction of high-resolution remote sensing image sample datasets and intelligent interpretation applications [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1165-1179. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||