Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (5): 691-702.doi: 10.11947/j.AGCS.2022.20210270
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
BAI Kun1, MU Xiaodong1, CHEN Xuebing2, ZHU Yongqing1, YOU Xuanang1
Received:2021-05-12
Revised:2021-12-30
Online:2022-05-20
Published:2022-05-28
Supported by:CLC Number:
BAI Kun, MU Xiaodong, CHEN Xuebing, ZHU Yongqing, YOU Xuanang. Unsupervised remote sensing image scene classification based on semi-supervised learning[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 691-702.
| [1] | 李德仁. 展望5G/6G时代的地球空间信息技术[J]. 测绘学报, 2019, 48(12):1475-1481.DOI:10.11947/j.AGCS.2019.20190437. LI Deren. Towards geospatial information technology in 5G/6G era[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12):1475-1481 DOI:10.11947/j.AGCS.2019.20190437. |
| [2] | 叶利华,王磊,张文文,等. 高分辨率光学遥感场景分类的深度度量学习方法[J]. 测绘学报, 2019, 48(6):698-707.DOI:10.11947/j.AGCS.2019.20180434. YE Lihua, WANG Lei, ZHANG Wenwen, et al. Deep metric learning method for high resolution remote sensing image scene classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6):698-707. DOI:10.11947/j.AGCS.2019.20180434. |
| [3] | 郑卓,方芳,刘袁缘,等. 高分辨率遥感影像场景的多尺度神经网络分类法[J]. 测绘学报, 2018, 47(5):620-630. DOI:10.11947/j.AGCS.2018.20170191. ZHENG Zhuo, FANG Fang, LIU Yuanyuan, et al. Joint multi-scale convolution neural network for scene classification of high resolution remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5):620-630. DOI:10.11947/j.AGCS.2018.20170191. |
| [4] | ZEILER Matthew D,FERGUS Rob. Visualizing and understanding convolutional networks[C]//Proceedings of 2014 European Conference on Computer Vision.[S.l.]:Springer, 2014:818-833. |
| [5] | ZHANG R, ISOLA P, EFROS A A. Colorful image colorization[C]//Proceedings of 2016 European Conference on Computer Vision.[S.l.]:Springer, 2016:649-666. |
| [6] | LARSSON G, MAIRE M, SHAKHNAROVICH G. Colorization as a proxy task for visual understanding[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA:IEEE, 2017:6874-6883. |
| [7] | KOMODAKIS N,GIDARIS S. Unsupervised representation learning by predicting image rotations[C]//Proceedings of 2018 International Conference on Learning Representations. Vancouver, Canada:ICLR, 2018. |
| [8] | CHEN Ting,ZHAI Xiaohua,RITTER Marvin, et al. Self-supervised GANs via auxiliary rotation loss[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Ca, USA:IEEE, 2019:12146-12155. |
| [9] | KIM D, CHO D, YOO D, et al. Learning image representations by completing damaged jigsaw puzzles[C]//Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe, NV, USA:IEEE, 2018:793-802. |
| [10] | NOROOZI M, FAVARO P. Unsupervised learning of visual representations by solving jigsaw puzzles[C]//Proceedings of 2016 European Conference on Computer Vision.[S.l.]:Springer, 2016:69-84. |
| [11] | WEI Chen,XIE Lingxi,REN Xutong, et al. Iterative reorganization with weak spatial constraints:solving arbitrary jigsaw puzzles for unsupervised representation learning[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA:IEEE, 2019:1910-1919. |
| [12] | CHEN Ting,KORNBLITH Simon,NOROUZI Mohammad, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of 2020 International Conference on Machine Learning. Addis Ababa, Ethiopia:PMLR, 2020:1597-1607. |
| [13] | HE Kaiming,FAN Haoqi,WU Yuxin, et al. Momentum contrast for unsupervised visual representation learning[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA:IEEE, 2020:9729-9738. |
| [14] | TAO Chao, QI Ji, LU Weipeng, et al. Remote sensing image scene classification with self-supervised paradigm under limited labeled samples[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. |
| [15] | CARON M,MISRA I,MAIRAL J, et al. Unsupervised learning of visual features by contrasting cluster assignments[C]//Proceedings of the 34th Conference on Neural Information Processing Systems.[S.l.]:NeurIPS, 2020. |
| [16] | GRILL J B, STRUB F, ALTCHÉ F, et al. Bootstrap your own latent:a new approach to self-supervised learning[J]. Advances in Neural Information Processing Systems, 2020, 33:21271-21284. |
| [17] | CHEN Xinlei, HE Kaiming. Exploring simple Siamese representation learning[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA:IEEE, 2021:15745-15753. |
| [18] | ZHAO Zhicheng,LUO Ze,LI Jian, et al. When self-supervised learning meets scene classification:remote sensing scene classification based on a multitask learning framework[J]. Remote Sensing, 2020, 12(20):3276. |
| [19] | VINCENZI S, PORRELLO A, BUZZEGA P, et al. The color out of space:learning self-supervised representations for Earth Observation imagery[C]//Proceedings of the 25th International Conference on Pattern Recognition (ICPR). Milan, Italy:IEEE, 2021:3034-3041. |
| [20] | REN Bo, ZHAO Yangyang, HOU Biao, et al. A mutual information-based self-supervised learning model for PolSAR land cover classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11):9224-9237. |
| [21] | JUNG H, OH Y, JEONG S, et al. Contrastive self-supervised learning with smoothed representation for remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. |
| [22] | CARON M, BOJANOWSKI P, JOULIN A, et al. Deep clustering for unsupervised learning of visual features[C]//Proceedings of 2018 European Conference on Computer Vision.[S.l.]:ECCV,2018. |
| [23] | VAN GANSBEKE W, VANDENHENDE S, GEORGOULIS S, et al. SCAN:learning to classify images without labels[C]//Proceedings of 2020 Computer Vision.[S.l.]:ECCV,2020. |
| [24] | MANDAL D, BHARADWAJ S, BISWAS S. A novel self-supervised re-labeling approach for training with noisy labels[C]//Proceedings of 2020 IEEE Winter Conference on Applications of Computer Vision. Snowmass, CO, USA:IEEE, 2020:1370-1379. |
| [25] | PARK S, HAN S, KIM S, et al. Improving unsupervised image clustering with robust learning[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA. IEEE, 2021:12273-12282. |
| [26] | LI Yunfan, HU Peng, LIU Zitao, et al. Contrastive clustering[C]//Proceedings of 2021 AAAI Conference on Artificial Intelligence. Vancouver, Canada:AAAI, 2021. |
| [27] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA:IEEE, 2016:770-778. |
| [28] | BERTHELOT D, CARLINI N, GOODFELLOW I J, et al. MixMatch:a holistic approach to semi-supervised learning[J]. Advances in Neural Information Processing Systems, 2019, 32:1905. |
| [29] | LU Xiaoqiang,GONG Tengfei,ZHENG Xiangtao. Multisource compensation network for remote sensing cross-domain scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4):2504-2515. |
| [30] | WEI Yufan,LUO Xiaobo,HU Lixin, et al. An improved unsupervised representation learning generative adversarial network for remote sensing image scene classification[J]. Remote Sensing Letters, 2020, 11(6):598-607. |
| [1] | Shunping JI, Jin LIU, Jian GAO, Jianya GONG. An intelligent 3D reconstruction framework via deep learning based multi-view image matching [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1633-1646. |
| [2] | Kai YAN, Jianming XU, Qiao WANG. Earth surface anomaly detection based on lightweight large vision model features in remotely sensed imagery [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1664-1676. |
| [3] | Wenjian GAN, Yang ZHOU, Xiaofei HU, Luying ZHAO, Gaoshuang HUANG, Mingbo HOU. Combining projective transform and road segmentation for street view-satellite images cross-view geo-localization [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1489-1500. |
| [4] | Tianjun WU, Manjia LI, Jiancheng LUO, Ziqi LI, Xiaodong HU, Lijing GAO, Zhanfeng SHEN. Farmland-parcel-based crop remote sensing classification method in complex mountainous areas via coupling spatial distribution patterns [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1215-1229. |
| [5] | Yakun XIE, Yaoji ZHAO, Jiaxing TU, Ruifeng XIA, Dejun FENG, Suning LIU, Hongyu CHEN, Jun ZHU. Edge and global features integrated network for salient object detection in optical remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1265-1279. |
| [6] | Zibo DONG, Jingxue WANG, Lijing BU, Lin FANG, Zhenghui XU. MAFNet: building extraction method from remote sensing images based on multi-scale atrous fusion network [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1094-1106. |
| [7] | Haifeng LI, Wang GUO, Mengwei WU, Chengli PENG, Qing ZHU, Yu LIU, Chao TAO. Visual-language joint representation and intelligent interpretation of remote sensing geo-objects: principles, challenges and opportunities [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 853-872. |
| [8] | Chao WANG, Tianyu CHEN, Tong ZHANG, Tanvir AHMED, Liqiang JI, Tao XIE, Jiajun YANG, Shuai WANG. Multi-sensor optical remote sensing images change detection based on global differential enhancement module and balance penalty loss [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 873-887. |
| [9] | Yiming ZHAO, Kelin HU, Kelong TU, Yaxian QING, Chao YANG, Kunlun QI, Huayi WU. Multi-label scene classification method based on fusion of SAR and optical remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 911-923. |
| [10] | Xinchang ZHANG, Ji QI, Chao TAO, Siyang FU, Mingning GUO, Yongjian RUAN. A survey on cloud removal in optical remote sensing images: progress, challenges, and future works [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(4): 603-620. |
| [11] | Qingdong WANG, Tengfei WANG, Li ZHANG. Cross-modal contrastive masked autoencoder pre-training for 3D real-scene point cloud [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(4): 675-687. |
| [12] | Zhaoyang HOU, Haowen YAN, Liming ZHANG, Rongjuan MA, Ruitao QU. Zero-watermark copyright protection method for remote sensing images based on coupled neural P system and blockchain [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2247-2261. |
| [13] | Hao WU, Dongyang HOU, Jun ZHANG, Ping ZHANG, Yuxuan LIU, Lei DU, Lu KANG, Tao CHENG, Jun CHEN. Research on key technologies of remote sensing based natural resources monitoring and supervision platform supported by dynamic service computing [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 1992-2008. |
| [14] | Xi GONG, Zhanlong CHEN, Hengqiang ZHENG, Sheng HU, Hongyan ZHANG. Remote sensing image scene classification method integrating spatial and semantic information of transferred features [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 2009-2025. |
| [15] | Zhili ZHANG, Huiwei JIANG, Xiangyun HU. A minimal-interaction framework for accurate and batch extraction of geospatial objects from remote sensing imagery [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(10): 1863-1876. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||