Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (5): 691-702.doi: 10.11947/j.AGCS.2022.20210270
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
BAI Kun1, MU Xiaodong1, CHEN Xuebing2, ZHU Yongqing1, YOU Xuanang1
Received:
2021-05-12
Revised:
2021-12-30
Online:
2022-05-20
Published:
2022-05-28
Supported by:
CLC Number:
BAI Kun, MU Xiaodong, CHEN Xuebing, ZHU Yongqing, YOU Xuanang. Unsupervised remote sensing image scene classification based on semi-supervised learning[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 691-702.
[1] | 李德仁. 展望5G/6G时代的地球空间信息技术[J]. 测绘学报, 2019, 48(12):1475-1481.DOI:10.11947/j.AGCS.2019.20190437. LI Deren. Towards geospatial information technology in 5G/6G era[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12):1475-1481 DOI:10.11947/j.AGCS.2019.20190437. |
[2] | 叶利华,王磊,张文文,等. 高分辨率光学遥感场景分类的深度度量学习方法[J]. 测绘学报, 2019, 48(6):698-707.DOI:10.11947/j.AGCS.2019.20180434. YE Lihua, WANG Lei, ZHANG Wenwen, et al. Deep metric learning method for high resolution remote sensing image scene classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6):698-707. DOI:10.11947/j.AGCS.2019.20180434. |
[3] | 郑卓,方芳,刘袁缘,等. 高分辨率遥感影像场景的多尺度神经网络分类法[J]. 测绘学报, 2018, 47(5):620-630. DOI:10.11947/j.AGCS.2018.20170191. ZHENG Zhuo, FANG Fang, LIU Yuanyuan, et al. Joint multi-scale convolution neural network for scene classification of high resolution remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5):620-630. DOI:10.11947/j.AGCS.2018.20170191. |
[4] | ZEILER Matthew D,FERGUS Rob. Visualizing and understanding convolutional networks[C]//Proceedings of 2014 European Conference on Computer Vision.[S.l.]:Springer, 2014:818-833. |
[5] | ZHANG R, ISOLA P, EFROS A A. Colorful image colorization[C]//Proceedings of 2016 European Conference on Computer Vision.[S.l.]:Springer, 2016:649-666. |
[6] | LARSSON G, MAIRE M, SHAKHNAROVICH G. Colorization as a proxy task for visual understanding[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA:IEEE, 2017:6874-6883. |
[7] | KOMODAKIS N,GIDARIS S. Unsupervised representation learning by predicting image rotations[C]//Proceedings of 2018 International Conference on Learning Representations. Vancouver, Canada:ICLR, 2018. |
[8] | CHEN Ting,ZHAI Xiaohua,RITTER Marvin, et al. Self-supervised GANs via auxiliary rotation loss[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Ca, USA:IEEE, 2019:12146-12155. |
[9] | KIM D, CHO D, YOO D, et al. Learning image representations by completing damaged jigsaw puzzles[C]//Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe, NV, USA:IEEE, 2018:793-802. |
[10] | NOROOZI M, FAVARO P. Unsupervised learning of visual representations by solving jigsaw puzzles[C]//Proceedings of 2016 European Conference on Computer Vision.[S.l.]:Springer, 2016:69-84. |
[11] | WEI Chen,XIE Lingxi,REN Xutong, et al. Iterative reorganization with weak spatial constraints:solving arbitrary jigsaw puzzles for unsupervised representation learning[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA:IEEE, 2019:1910-1919. |
[12] | CHEN Ting,KORNBLITH Simon,NOROUZI Mohammad, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of 2020 International Conference on Machine Learning. Addis Ababa, Ethiopia:PMLR, 2020:1597-1607. |
[13] | HE Kaiming,FAN Haoqi,WU Yuxin, et al. Momentum contrast for unsupervised visual representation learning[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA:IEEE, 2020:9729-9738. |
[14] | TAO Chao, QI Ji, LU Weipeng, et al. Remote sensing image scene classification with self-supervised paradigm under limited labeled samples[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. |
[15] | CARON M,MISRA I,MAIRAL J, et al. Unsupervised learning of visual features by contrasting cluster assignments[C]//Proceedings of the 34th Conference on Neural Information Processing Systems.[S.l.]:NeurIPS, 2020. |
[16] | GRILL J B, STRUB F, ALTCHÉ F, et al. Bootstrap your own latent:a new approach to self-supervised learning[J]. Advances in Neural Information Processing Systems, 2020, 33:21271-21284. |
[17] | CHEN Xinlei, HE Kaiming. Exploring simple Siamese representation learning[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA:IEEE, 2021:15745-15753. |
[18] | ZHAO Zhicheng,LUO Ze,LI Jian, et al. When self-supervised learning meets scene classification:remote sensing scene classification based on a multitask learning framework[J]. Remote Sensing, 2020, 12(20):3276. |
[19] | VINCENZI S, PORRELLO A, BUZZEGA P, et al. The color out of space:learning self-supervised representations for Earth Observation imagery[C]//Proceedings of the 25th International Conference on Pattern Recognition (ICPR). Milan, Italy:IEEE, 2021:3034-3041. |
[20] | REN Bo, ZHAO Yangyang, HOU Biao, et al. A mutual information-based self-supervised learning model for PolSAR land cover classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11):9224-9237. |
[21] | JUNG H, OH Y, JEONG S, et al. Contrastive self-supervised learning with smoothed representation for remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. |
[22] | CARON M, BOJANOWSKI P, JOULIN A, et al. Deep clustering for unsupervised learning of visual features[C]//Proceedings of 2018 European Conference on Computer Vision.[S.l.]:ECCV,2018. |
[23] | VAN GANSBEKE W, VANDENHENDE S, GEORGOULIS S, et al. SCAN:learning to classify images without labels[C]//Proceedings of 2020 Computer Vision.[S.l.]:ECCV,2020. |
[24] | MANDAL D, BHARADWAJ S, BISWAS S. A novel self-supervised re-labeling approach for training with noisy labels[C]//Proceedings of 2020 IEEE Winter Conference on Applications of Computer Vision. Snowmass, CO, USA:IEEE, 2020:1370-1379. |
[25] | PARK S, HAN S, KIM S, et al. Improving unsupervised image clustering with robust learning[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA. IEEE, 2021:12273-12282. |
[26] | LI Yunfan, HU Peng, LIU Zitao, et al. Contrastive clustering[C]//Proceedings of 2021 AAAI Conference on Artificial Intelligence. Vancouver, Canada:AAAI, 2021. |
[27] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA:IEEE, 2016:770-778. |
[28] | BERTHELOT D, CARLINI N, GOODFELLOW I J, et al. MixMatch:a holistic approach to semi-supervised learning[J]. Advances in Neural Information Processing Systems, 2019, 32:1905. |
[29] | LU Xiaoqiang,GONG Tengfei,ZHENG Xiangtao. Multisource compensation network for remote sensing cross-domain scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4):2504-2515. |
[30] | WEI Yufan,LUO Xiaobo,HU Lixin, et al. An improved unsupervised representation learning generative adversarial network for remote sensing image scene classification[J]. Remote Sensing Letters, 2020, 11(6):598-607. |
[1] | ZHANG Zuxun, JIANG Huiwei, PANG Shiyan, HU Xiangyun. Review and prospect in change detection of multi-temporal remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1091-1107. |
[2] | WANG Qiao. Research framework of remote sensing monitoring and real-time diagnosis of earth surface anomalies [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1141-1152. |
[3] | ZHANG Kefei, LI Haobo, WANG Xiaoming, ZHU Dantong, HE Qimin, LI Longjiang, HU Andong, ZHENG Nanshan, LI Huaizhan. Recent progresses and future prospectives of ground-based GNSS water vapor sounding [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1172-1191. |
[4] | ZHANG Liangpei, HE Jiang, YANG Qianqian, XIAO Yi, YUAN Qiangqiang. Data-driven multi-source remote sensing data fusion: progress and challenges [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1317-1337. |
[5] | WU Lixin, QI Yuan, MAO Wenfei, LIU Shanjun, DING Yifan, JING Feng, SHEN Xuhui. Progresses and possible frontiers in the study on seismic applications of multi-frequency and multi-polarization passive microwave remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1356-1371. |
[6] | XU Qiang, ZHU Xing, LI Weile, DONG Xiujun, DAI Keren, JIANG Yanan, LU Huiyan, GUO Chen. Technical progress of space-air-ground collaborative monitoring of landslide [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. |
[7] | LI Deren, WANG Mi, YANG Fang. A new generation of intelligent mapping and remote sensing scientific test satellite Luojia-3 01 [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 789-796. |
[8] | GONG Jianya, HUAN Linxi, ZHENG Xianwei. Deep learning interpretability analysis methods in image interpretation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 873-884. |
[9] | ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885-896. |
[10] | LI Rongxing, LI Guojun, FENG Tiantian, SHEN Qiang, QIAO Gang, YE Zhen, XIA Menglian. A review of Antarctic ice velocity products and methods based on optical remote sensing satellite images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 953-963. |
[11] | CHENG Jiehai, HUANG Zhongyi, WANG Jianru, HE Shi. The automatic determination method of the optimal segmentation result of high-spatial resolution remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 658-667. |
[12] | GONG Jianya, ZHANG Mi, HU Xiangyun, ZHANG Zhan, LI Yansheng, Jiang Liangcun. The design of deep learning framework and model for intelligent remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 475-487. |
[13] | TONG Xiaohua, LIU Shijie, XIE Huan, XU Xiong, YE Zhen, FENG Yongjiu, WANG Chao, LIU Sicong, JIN Yanmin, CHEN Peng, HONG Zhonghua, LUAN Kuifeng. From Earth mapping to extraterrestrial planet mapping [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 488-500. |
[14] | WANG Quan, YOU Shucheng. Research and application outlook of land satellite remote sensing monitoring system [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 534-543. |
[15] | FENG Yongjiu, LI Pengshuo, TONG Xiaohua, XI Mengrong, LIU Sicong, XU Xiong. Key technologies for remote sensing intelligent monitoring and simulation of urban spatial elements [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 577-586. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||