Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (4): 577-586.doi: 10.11947/j.AGCS.2022.20220086
• The 90th Anniversary of Tongji University Surveying and Mapping Discipline • Previous Articles Next Articles
FENG Yongjiu1,2, LI Pengshuo1,2, TONG Xiaohua1,2, XI Mengrong1,2, LIU Sicong1,2, XU Xiong1,2
Received:
2022-02-14
Revised:
2022-03-23
Published:
2022-04-24
Supported by:
CLC Number:
FENG Yongjiu, LI Pengshuo, TONG Xiaohua, XI Mengrong, LIU Sicong, XU Xiong. Key technologies for remote sensing intelligent monitoring and simulation of urban spatial elements[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 577-586.
[1] 周成虎. 全空间地理信息系统展望[J]. 地理科学进展, 2015, 34(2): 129-131. ZHOU Chenghu. Prospects on pan-spatial information system[J]. Progress in Geography, 2015, 34(2): 129-131. [2] 龚健雅. 人工智能时代测绘遥感技术的发展机遇与挑战[J]. 武汉大学学报(信息科学版), 2018, 43(12): 1788-1796. GONG Jianya. Chances and challenges for development of surveying and remote sensing in the age of artificial intelligence[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1788-1796. [3] IM J. Earth observations and geographic information science for sustainable development goals[J]. GIScience & Remote Sensing, 2020, 57(5): 591-592. [4] 龚健雅, 张翔, 向隆刚, 等. 智慧城市综合感知与智能决策的进展及应用applications for integrated sensing and intelligent decision in smart city[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1482-1497.DOI: 10.11947/j.AGCS.2019.20190464. [5] 周成虎. 地理元胞自动机研究[M]. 北京: 科学出版社, 1999. ZHOU Chenghu. Research on geographical cellular automata[M]. Beijing: Science Press, 1999. [6] 黎夏. 协同空间模拟与优化及其在快速城市化地区的应用[J]. 地球信息科学学报, 2013, 15(3): 321-327. LI Xia. Collaborative spatio- simulation and optimization and its application in fast growing regions[J]. Journal of Geo-Information Science, 2013, 15(3): 321-327. [7] LIU Yan, CORCORAN J, FENG Yongjiu. Cellular automata[M]. Amsterdam: Elsevier, 2020: 101-104. [8] LIU Xiaoping, LIANG Xun, LI Xia, et al. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects[J]. Landscape and Urban Planning, 2017, 168: 94-116. [9] TOBLER W R. A computer movie simulating urban growth in the Detroit region[J]. Economic Geography, 1970, 46(s1): 234-240. [10] COUCLELIS H. Cellular worlds: a framework for modeling micro—macro dynamics[J]. Environment and Planning A: Economy and Space, 1985, 17(5): 585-596. [11] WHITE R, ENGELEN G. Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns[J]. Environment and Planning A: Economy and Space, 1993, 25(8): 1175-1199. [12] CLARKE K C, HOPPEN S, GAYDOS L. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area[J]. Environment and Planning B: Planning and Design, 1997, 24(2): 247-261. [13] 刘耀林, 何建华. 科技创新推动下“智慧土地”发展的机遇与挑战[J]. 中国科学院院刊, 2020, 35(5): 645-652. LIU Yaolin, HE Jianhua. Opportunities and challenges for sci-tech innovation promoted development of smart land[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(5): 645-652. [14] LI Xia, YEH A G. Cellular automata modelling for urban planning in fast-growth regions, Handbook of planning support science[M]. London,UK:Edward Elgar Publishing, 2020. [15] CAMPBELL J B, WYNNE R H. Introduction to remote sensing[M]. Guilford:Guilford Press, 2011. [16] KUSSUL N, LAVRENIUK M, SKAKUN S, et al. Deep learning classification of land cover and crop types using remote sensing data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 778-782. [17] FENG Yongjiu, LIU Yang, TONG Xiaohua. Spatiotemporal variation of landscape patterns and their spatial determinants in Shanghai, China[J]. Ecological Indicators, 2018, 87: 22-32. [18] CHEN Jun, CHEN Jin, LIAO Anping, et al. Global land cover mapping at 30 m resolution: a POK-based operational approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103: 7-27. [19] GONG Peng, CHEN Bin, LI Xuecao, et al. Mapping essential urban land use categories in China (EULUC-China): preliminary results for 2018[J]. Science Bulletin, 2020, 65(3): 182-187. [20] 陈军, 陈晋, 廖安平, 等. 全球30 m地表覆盖遥感制图的总体技术[J]. 测绘学报, 2014, 43(6): 551-557. CHEN Jun, CHEN Jin, LIAO Anping, et al. Concepts and key techniques for 30 m global land cover mapping[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(6): 551-557. [21] 刘良云. 叶面积指数遥感尺度效应与尺度纠正[J]. 遥感学报, 2014, 18(6): 1158-1168. LIU Liangyun. Simulation and correction of spatialscaling effects for leaf area index[J]. Journal of Remote Sensing, 2014, 18(6): 1158-1168. [22] FENG Yongjiu, LI Heping, TONG Xiaohua, et al. Projection of land surface temperature considering the effects of future land change in the Taihu Lake Basin of China[J]. Global and Planetary Change, 2018, 167: 24-34. [23] FENG Yongjiu, TONG Xiaohua. Using exploratory regression to identify optimal driving factors for cellular automaton modeling of land use change[J]. Environmental Monitoring and Assessment, 2017, 189(10): 1-17. [24] FENG Yongjiu, WANG Rong, TONG Xiaohua, et al. How much can temporally stationary factors explain cellular automata-based simulations of past and future urban growth? [J]. Computers, Environment and Urban Systems, 2019, 76: 150-162. [25] YAN Xinlei, FENG Yongjiu, TONG Xiaohua, et al. Reducing spatial autocorrelation in the dynamic simulation of urban growth using eigenvector spatial filtering[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102434. [26] 邓敏, 蔡建南, 杨文涛, 等. 多模态地理大数据时空分析方法[J]. 地球信息科学学报, 2020, 22(1): 41-56. DENG Min, CAI Jiannan, YANG Wentao, et al. Spatio-temporal analysis methods for multi-modal geographic big data[J]. Journal of Geo-Information Science, 2020, 22(1): 41-56. [27] 郭仁忠. 空间分析[M]. 2版. 北京: 高等教育出版社, 2001. GUO Renzhong. Spacial analysis[M]. Beijing: Higher Education Press, 2001. [28] CHEN Shurui, FENG Yongjiu, TONG Xiaohua, et al. Modeling ESV losses caused by urban expansion using cellular automata and geographically weighted regression[J]. Science of the Total Environment, 2020, 712: 136509. [29] FENG Yongjiu, TONG Xiaohua. Dynamic land use change simulation using cellular automata with spatially nonstationary transition rules[J]. GIScience & Remote Sensing, 2018, 55(5): 678-698. [30] FENG Yongjiu, TONG Xiaohua. A new cellular automata framework of urban growth modeling by incorporating statistical and heuristic methods[J]. International Journal of Geographical Information Science, 2020, 34(1): 74-97. [31] FENG Yongjiu, YANG Qianqian, HONG Zhonghua, et al. Modelling coastal land use change by incorporating spatial autocorrelation into cellular automata models[J]. Geocarto International, 2018, 33(5): 470-488. [32] FENG Yongjiu, TONG Xiaohua. Incorporation of spatial heterogeneity-weighted neighborhood into cellular automata for dynamic urban growth simulation[J]. GIScience & Remote Sensing, 2019, 56(7): 1024-1045. [33] 陈军, 刘万增, 武昊, 等. 智能化测绘的基本问题与发展方向[J]. 测绘学报, 2021, 50(8): 995-1005.DOI: 10.11947/j.AGCS.2021.20210235. CHEN Jun, LIU Wanzeng, WU Hao, et al. Smart surveying and mapping: fundamental issues and research agenda[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 995-1005.DOI: 10.11947/j.AGCS.2021.20210235. [34] FENG Yongjiu, LIU Yan, TONG Xiaohua. Comparison of metaheuristic cellular automata models: a case study of dynamic land use simulation in the Yangtze River Delta[J]. Computers, Environment and Urban Systems, 2018, 70: 138-150. [35] VARGA O G, PONTIUS R G Jr, SINGH S K, et al. Intensity analysis and the figure of Merit's components for assessment of a Cellular Automata-Markov simulation model[J]. Ecological Indicators, 2019, 101: 933-942. [36] WOLF L J, ANSELIN L, ARRIBAS-BEL D, et al. On spatial and platial dependence: examining shrinkage in spatially dependent multilevel models[J]. Annals of the American Association of Geographers, 2021,111(6): 1679-1691. [37] PONTIUS R G, CASTELLA J C, NIJS T, et al. Lessons and challenges in land change modeling derived from synthesis of cross-case comparisons[J]. Trends In Spatial Analysis And Modelling, 2018(1): 143-164. [38] TONG Xiaohua, FENG Yongjiu. A review of assessment methods for cellular automata models of land-use change and urban growth[J]. International Journal of Geographical Information Science, 2020, 34(5): 866-898. [39] WANG Siqin, LIU Yan, FENG Yongjiu, et al. To move or stay? A cellular automata model to predict urban growth in coastal regions amidst rising sea levels[J]. International Journal of Digital Earth, 2021, 14(9): 1213-1235. [40] FENG Yongjiu, TONG Xiaohua. Calibrating nonparametric cellular automata with a generalized additive model to simulate dynamic urban growth[J]. Environmental Earth Sciences, 2017, 76(14): 1-15. [41] 岳文泽, 王田雨, 甄延临. “三区三线”为核心的统一国土空间用途管制分区[J]. 中国土地科学, 2020, 34(5): 52-59, 68. YUE Wenze, WANG Tianyu, ZHEN Yanlin. Unified zoning of territorial space use control derived from the core concept of “three types of spatial zones and alert-lines”[J]. China Land Science, 2020, 34(5): 52-59, 68. [42] FENG Yongjiu, LEI Zhenkun, TONG Xiaohua, et al. Spatially-explicit modeling and intensity analysis of China's land use change 2000—2050[J]. Journal of Environmental Management, 2020, 263: 110407. [43] TONG Xiaohua, FENG Yongjiu. How current and future urban patterns respond to urban planning? An integrated cellular automata modeling approach[J]. Cities, 2019, 92: 247-260. [44] AZARI M, TAYYEBI A, HELBICH M, et al. Integrating cellular automata, artificial neural network, and fuzzy set theory to simulate threatened orchards: application to Maragheh, Iran[J]. GIScience & Remote Sensing, 2016, 53(2): 183-205. [45] FENG Yongjiu, WANG Jiafeng, TONG Xiaohua, et al. The effect of observation scale on urban growth simulation using particle swarm optimization-based CA models[J]. Sustainability, 2018, 10(11): 4002. [46] SHIFERAW H, BEWKET W, ALAMIREW T, et al. Implications of land use/land cover dynamics and Prosopis invasion on ecosystem service values in Afar Region, Ethiopia[J]. Science of the Total Environment, 2019, 675: 354-366. [47] GONG Jianzhou, HU Zhiren, CHEN Wenli, et al. Urban expansion dynamics and modes in metropolitan Guangzhou, China[J]. Land Use Policy, 2018, 72: 100-109. [48] FENG Yongjiu, CHEN Shurui, TONG Xiaohua, et al. Modeling changes in China's 2000—2030 carbon stock caused by land use change[J]. Journal of Cleaner Production, 2020, 252: 119659. [49] LIU Xiaoping, WANG Shaojian, WU Peijun, et al. Impacts of urban expansion on terrestrial carbon storage in China[J]. Environmental Science & Technology, 2019, 53(12): 6834-6844. [50] WADDELL P. UrbanSim: modeling urban development for land use, transportation, and environmental planning[J]. Journal of the American Planning Association, 2002, 68(3): 297-314. [51] DIETZEL C, CLARKE K C. Toward optimal calibration of the SLEUTH land use change model[J]. Transactions in GIS, 2007, 11(1): 29-45. [52] VERBURG P H, SOEPBOER W, VELDKAMP A, et al. Modeling the spatial dynamics of regional land use: the CLUE-S model[J]. Environmental Management, 2002, 30(3): 391-405. [53] FENG Yongjiu. Modeling dynamic urban land-use change with geographical cellular automata and generalized pattern search-optimized rules[J]. International Journal of Geographical Information Science, 2017, 31(6): 1198-1219. [54] CLARKE K C. Land use change modeling with SLEUTH: improving calibration with a genetic algorithm[M]//Geomatic Approaches for Modeling Land Change Scenarios. Cham: Springer International Publishing, 2017: 139-161. [55] KUCSICSA G, POPOVICI E A, BĂLTEANU D, et al. Future land use/cover changes in Romania: regional simulations based on CLUE-S model and CORINE land cover database[J]. Landscape and Ecological Engineering, 2019, 15(1): 75-90. [56] FENG Yongjiu, LIU Yan. A heuristic cellular automata approach for modelling urban land-use change based on simulated annealing[J]. International Journal of Geographical Information Science, 2013, 27(3): 449-466. |
[1] | LIU Jingnan, LUO Yarong, GUO Chi, GAO Kefu. PNT intelligence and intelligent PNT [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 811-828. |
[2] | HAN Litao, ZHOU Lijuan, GONG Cheng, ZHANG Aiguo. An indoor navigation network considering walking habits and its generation algorithm [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 729-738. |
[3] | FANG Jinfeng, MENG Xiangfu. POI recommendation based on LBSN and multi-graph fusion [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 739-749. |
[4] | ZHANG Ruizhuo. Risk assessment of power transmission corridors in forestry area based on multi-source data [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 784-784. |
[5] | XIA Jizhe, ZHOU Ying, LI Zhen, LI Fan, YUE Yang, CHENG Tao, LI Qingquan. COVID-19 risk assessment driven by urban spatiotemporal big data: a case study of Guangdong-Hong Kong-Macao Greater Bay Area [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 671-680. |
[6] | ZHU Qing, FENG Bin, LI Maosu, CHEN Meite, XU Zhaowen, XIE Xiao, ZHANG Yeting, LIU Mingwei, HUANG Zhiqin, FENG Yicong. An efficient sparse graph index method for dynamic and associated data [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 681-691. |
[7] | LU Chuanwei, SUN Qun, CHEN Bing, WEN Bowei, ZHAO Yunpeng, XU Li. Road learning extraction method based on vehicle trajectory data [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 692-702. |
[8] | YIN Shuo, YAN Xiaoming, YAN Xiongfeng. Simplification method of building polygon based on feature edges reconstruction [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 703-710. |
[9] | WU Huayi, HUANG Rui, YOU Lan, XIANG Longgang. Recent progress in taxi trajectory data mining [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1341-1356. |
[10] | GUO Qingsheng, LIU Yang, LI Meng, CHENG Xiaoxi, HE Jie, WANG Huihui, WEI Zhiwei. A progressive simplification method of navigation road map based on mesh model [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1357-1368. |
[11] | WU Zheng, WU Pengda, LI Chengming. Adaptive hierarchical spatio-temporal index construction method for vector data under peer-to-peer networks [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1369-1379. |
[12] | WANG Peixiao, ZHANG Hengcai, WANG Haibo, WU Sheng. Spatial-temporal clustering by fast search and find of density peaks [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1380-1390. |
[13] | WAN Zijian, LI Lianying, YANG Min, ZHOU Xiaodong. Decision tree model for extracting road intersection feature from vehicle trajectory data [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1391-1403. |
[14] | HU Guanghui, XIONG Liyang, TANG Guoan. Vector geometry based method for the extraction of slope of aspect by using DEMs [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1404-1414. |
[15] | ZHANG Xu, HAO Xiangyang, LI Jiansheng, LI Pengyue. Fusion and visualization method of dynamic targets in surveillance video with geospatial information [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1415-1423. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||