Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (7): 1356-1371.doi: 10.11947/j.AGCS.2022.20220131
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
WU Lixin1,2, QI Yuan1,2, MAO Wenfei1,2, LIU Shanjun3, DING Yifan1,2, JING Feng4, SHEN Xuhui5
Received:
2022-02-25
Revised:
2022-05-25
Published:
2022-08-13
Supported by:
CLC Number:
WU Lixin, QI Yuan, MAO Wenfei, LIU Shanjun, DING Yifan, JING Feng, SHEN Xuhui. Progresses and possible frontiers in the study on seismic applications of multi-frequency and multi-polarization passive microwave remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1356-1371.
[1] ULABY F T, LONG D G. Microwave radar and radiometric remote sensing[M]. Ann Arbor:The University of Michigan Press, 2014. [2] HASTED J B. Aqueous dielectrics[M]. London:Chapman and Hall, 1973. [3] WANG J R, SCHMUGGE T J. An empirical model for the complex dielectric permittivity of soils as a function of water content[J]. IEEE Transactions on Geoscience and Remote Sensing, 1980, GE-18(4):288-295. DOI:10.1109/TGRS.1980.350304. [4] JACKSON T J. Ⅲ. Measuring surface soil moisture using passive microwave remote sensing[J]. Hydrological Processes, 1993, 7(2):139-152. DOI:10.1002/hyp.3360070205. [5] MLADENOVA I E, JACKSON T J, NJOKU E, et al. Remote monitoring of soil moisture using passive microwave-based techniques-theoretical basis and overview of selected algorithms for AMSR-E[J]. Remote Sensing of Environment, 2014, 144:197-213. DOI:10.1016/j.rse.2014.01.013. [6] NJOKU E G, JACKSON T J, LAKSHMI V, et al. Soil moisture retrieval from AMSR-E[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2):215-229. DOI:10.1109/TGRS.2002.808243. [7] NJOKU E G, ENTEKHABI D. Passive microwave remote sensing of soil moisture[J]. Journal of Hydrology, 1996, 184(1-2):101-129. DOI:10.1016/0022-1694(95)02970-2. [8] 金亚秋.星载微波SSM/I遥感在中国东北华北农田的辐射特征分析[J].遥感学报, 1998, 2(1):19-25. JIN Yaqiu. Data analysis of the spaceborne SSM/I over crop areas of the Northern China[J]. Journal of Remote Sensing, 1998, 2(1):19-25. [9] 谷松岩,张文建,邱红. SSM/I资料反演大范围地表湿度试验[J].应用气象学报, 2004, 15(4):407-416. GU Songyan, ZHANG Wenjian, QIU Hong. Retrieving regional soil moisture over China from SSM/I microwave data[J]. Journal of Applied Meteorological Science, 2004, 15(4):407-416. [10] 乔平林,张继贤,王翠华.应用AMSR-E微波遥感数据进行土壤湿度反演[J].中国矿业大学学报, 2007, 36(2):262-265. QIAO Pinglin, ZHANG Jixian, WANG Cuihua. Soil moisture retrieving by AMSR-E microwave remote sensing data[J]. Journal of China University of Mining&Technology, 2007, 36(2):262-265. [11] 杨涛,宫辉力,李小娟,等.土壤水分遥感监测研究进展[J].生态学报, 2010, 30(22):6264-6277. YANG Tao, GONG Huili, LI Xiaojuan, et al. Progress of soil moisture monitoring by remote sensing[J]. Acta Ecologica Sinica, 2010, 30(22):6264-6277. [12] PRIGENT C, ROSSOW W B, MATTHEWS E. Microwave land surface emissivities estimated from SSM/I observations[J]. Journal of Geophysical Research:Atmospheres, 1997, 102(D18):21867-21890. DOI:10.1029/97JD01360. [13] PRIGENT C, ROSSOW W B, MATTHEWS E. Global maps of microwave land surface emissivities:potential for land surface characterization[J]. Radio Science, 1998, 33(3):745-751. DOI:10.1029/97RS02460. [14] LI Zhaoliang, TANG Bohui, WU Hua, et al. Satellite-derived land surface temperature:current status and perspectives[J]. Remote Sensing of Environment, 2013, 131:14-37. DOI:10.1016/j.rse.2012.12.008. [15] 毛克彪,施建成,李召良,等.一个针对被动微波AMSR-E数据反演地表温度的物理统计算法[J].中国科学D辑:地球科学, 2006, 36(12):1170-1176. MAO Kebiao, SHI Jiancheng, LI Zhaoliang, et al. A physics-based statistical algorithm for retrieving land surface temperature from AMSR-E passive microwave data[J]. Science in China Series D:Earth Sciences, 2006, 36(12):1170-1176. [16] 毛克彪,施建成,李召良,等.用被动微波AMSR数据反演地表温度及发射率的方法研究[J].国土资源遥感, 2005(3):14-17. MAO Kebiao, SHI Jiancheng, LI Zhaoliang, et al. The land surface temperature and emissivity retrieved from the AMSR passive microwave data[J]. Remote Sensing for Land&Resources, 2005(3):14-17. [17] KARBOU F, GÉRARD É, RABIER F. Microwave land emissivity and skin temperature for AMSU-A and-B assimilation over land[J]. Quarterly Journal of the Royal Meteorological Society, 2006, 132(620):2333-2355. DOI:10.1256/qj.05.216. [18] SCHROEDER R, MCDONALD K C, CHAPMAN B D, et al. Development and evaluation of a multi-year fractional surface water data set derived from active/passive microwave remote sensing data[J]. Remote Sensing, 2015, 7(12):16688-16732. DOI:10.3390/rs71215843. [19] TAIT A B. Estimation of snow water equivalent using passive microwave radiation data[J]. Remote Sensing of Environment, 1998, 64(3):286-291. DOI:10.1016/S0034-4257(98)00005-4. [20] 车涛,李新,高峰.青藏高原积雪深度和雪水当量的被动微波遥感反演[J].冰川冻土, 2004, 26(3):363-368. CHE Tao, LI Xin, GAO Feng. Estimation of snow water equivalent in the Tibetan Plateau using passive microwave remote sensing data (SSM/I)[J]. Journal of Glaciology and Geocryology, 2004, 26(3):363-368. [21] CHE Tao, LI Xin, JIN Rui, et al. Snow depth derived from passive microwave remote-sensing data in China[J]. Annals of Glaciology, 2008, 49:145-154. DOI:10.3189/172756408787814690. [22] ROTT H, PAUL F. Satellite remote sensing of glaciers and ice sheets[M]//FOWLER A, NG F. Glaciers and Ice Sheets in the Climate System. Cham:Springer, 2021:327-348. DOI:10.1007/978-3-030-42584-5_13. [23] 殷晓斌.海面风矢量、温度和盐度的被动微波遥感及风对温盐遥感的影响研究[D].青岛:中国海洋大学, 2007. YIN Xiaobin. A study on the passive microwave remote sensing of sea surface wind vector, temperature and salinity and the effect of wind on remote sensing of temperature and salinity[D]. Qingdao:Ocean University of China, 2007. [24] BLUME H J C, KENDALL B M. Passive microwave measurements of temperature and salinity in coastal zones[J]. IEEE Transactions on Geoscience and Remote Sensing, 1982, GE-20(3):394-404. DOI:10.1109/TGRS.1982.350461. [25] KLEMAS V. Remote sensing of sea surface salinity:an overview with case studies[J]. Journal of Coastal Research, 2011, 27(5):830-838. DOI:10.2112/JCOASTRES-D-11-00060.1. [26] PRABHAKARA C, WANG I, CHANG A T C, et al. A statistical examination of Nimbus-7 SMMR data and remote sensing of sea surface temperature, liquid water content in the atmosphere and surface wind speed[J]. Journal of Applied Meteorology and Climatology, 1983, 22(12):2023-2037. DOI:10.1175/1520-0450(1983)022<2023:ASEONS>2.0.CO;2. [27] BENTAMY A, QUEFFEULOU P, QUILFEN Y, et al. Ocean surface wind fields estimated from satellite active and passive microwave instruments[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5):2469-2486. DOI:10.1109/36.789643. [28] CHANG A T C, WILHEIT T T. Remote sensing of atmospheric water vapor, liquid water, and wind speed at the ocean surface by passive microwave techniques from the Nimbus 5 satellite[J]. Radio Science, 1979, 14(5):793-802. DOI:10.1029/RS014i005p00793. [29] 王振占,姜景山,刘璟怡,等.全极化微波辐射计遥感海面风场的关键技术和科学问题[J].中国工程科学, 2008, 10(6):76-86. WANG Zhenzhan, JIANG Jingshan, LIU Jingyi, et al. Critical technique and scientific topic on fully polarized microwave radiometer remote sensing sea surface wind vector[J]. Engineering Science, 2008, 10(6):76-86. [30] TROY B E, HOLLINGER, J P, LERNER, R M, et al. Measurement of the microwave properties of sea ice at 90GHz and lower frequencies[J]. Journal of Geophysical Research:Oceans, 1981, 86(C5):4283-4289. DOI:10.1029/JC086iC05p04283. [31] 季青,庞小平,许苏清,等.极地海冰厚度探测方法及其应用研究综述[J].极地研究, 2016, 28(4):431-441. DOI:10.13679/j.jdyj.2016.4.431. JI Qing, PANG Xiaoping, XU Suqing, et al. Review of technology and application research on polar sea ice thickness detection[J]. Chinese Journal of Polar Research, 2016, 28(4):431-441. DOI:10.13679/j.jdyj.2016.4.431. [32] SCHLUESSEL P, EMERY W J. Atmospheric water vapour over oceans from SSM/I measurements[J]. International Journal of Remote Sensing, 1990, 11(5):753-766. DOI:10.1080/01431169008955055. [33] 李芸,王振占."神舟4号"飞船微波辐射计亮温反演海面温度、风速和大气水汽含量[J].遥感技术与应用, 2005, 20(1):133-136. LI Yun, WANG Zhenzhan. Retrievals of sea surface temperatures, wind speeds, volume water vapor contents from SZ-4 RAD brightness temperatures[J]. Remote Sensing Technology and Application, 2005, 20(1):133-136. [34] WATERS J W, KUNZI K F, PETTYJOHN R L, et al. Remote sensing of atmospheric temperature profiles with the Nimbus 5 microwave spectrometer[J]. Journal of the Atmospheric Sciences, 1975, 32(10):1953-1969. DOI:10.1175/1520-0469(1975)032<1953:RSOATP>2.0.CO;2. [35] DI PAOLA F, RICCIARDELLI E, CIMINI D, et al. MiRTaW:an algorithm for atmospheric temperature and water vapor profile estimation from ATMS measurements using a random forests technique[J]. Remote Sensing, 2018, 10(9):1398. DOI:10.3390/rs10091398. [36] 谷松岩,高慧琳,朱元竞,等. TMI被动微波遥感资料用于地表洪涝特征分析试验[J].遥感学报, 2004, 8(3):261-268. GU Songyan, GAO Huilin, ZHU Yuanjing, et al. The application of TMI polarization ratio PR in flooded area detecting and classification[J]. Journal of Remote Sensing, 2004, 8(3):261-268. [37] TUCKER C J, CHOUDHURY B J. Satellite remote sensing of drought conditions[J]. Remote Sensing of Environment, 1987, 23(2):243-251. DOI:10.1016/0034-4257(87)90040-X. [38] 陈修治,苏泳娴,李勇,等.基于被动微波遥感的中国干旱动态监测[J].农业工程学报, 2013, 29(16):151-158. CHEN Xiuzhi, SU Yongxian, LI Yong, et al. Monitoring drought dynamics of China using passive microwave remote sensing technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(16):151-158. [39] VAROTSOS C A, KRAPIVIN V F, MKRTCHYAN F A. A new passive microwave tool for operational forest fires detection:a case study of Siberia in 2019[J]. Remote Sensing, 2020, 12(5):835. DOI:10.3390/rs12050835. [40] MAEDA T, TAKANO T. Discrimination of local and faint changes from satellite-borne microwave-radiometer data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9):2684-2691. DOI:10.1109/TGRS.2008.919144. [41] TAKANO T, MAEDA T. Experiment and theoretical study of earthquake detection capability by means of microwave passive sensors on a satellite[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(1):107-111. DOI:10.1109/LGRS.2008.2005735. [42] 吴立新,秦凯,刘善军.断裂活动及孕震过程遥感热异常分析的研究进展[J].测绘学报, 2017, 46(10):1470-1481. DOI:10.11947/j.AGCS.2017.20170347. WU Lixin, QIN Kai, LIU Shanjun. Progress in analysis to remote sensed thermal abnormity with fault activity and seismogenic process[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1470-1481. DOI:10.11947/j.AGCS.2017.20170347. [43] STRAITON A W, TOLBERT C W, BRITT C O. Apparent temperatures of some terrestrial materials and the sun at 4.3-millimeter wavelengths[J]. Journal of Applied Physics, 1958, 29(5):776-782. [44] BASHARINOV A E, GURVICH A S, YEGOROV S T, et al. The results of microwave sounding of the Earth's surface according to experimental data from the satellite Cosmos 243[G]. Space Research XI, A Kademie Verlag, Berlin, 1971. [45] GORBUNOV M E, KUTUZA B G. Cosmos-243 as the starting point for the development of microwave radiometry methods of the Earth's atmosphere and surface[J]. Izvestiya, Atmospheric and Oceanic Physics, 2018, 54(3):275-281. DOI:10.1134/S0001433818030076. [46] GRANTHAM W, BRACALENTE E, JONES W, et al. The Seasat-A satellite scatterometer[J]. IEEE Journal of Oceanic Engineering, 1977, 2(2):200-206. DOI:10.1109/JOE.1977.1145338. [47] BORN G H, DUNNE J A, LAME D B. Seasat mission overview[J]. Science, 1979, 204(4400):1405-1406. DOI:10.1126/science.204.4400.1405. [48] HALEY R, SCHARDT B. The Nimbus satellite program[C]//Proceedings of the 5th Annual Meeting and Technical Display. Philadelphia, PA:AIAA, 1968:1093. DOI:10.2514/6.1968-1093. [49] EDEN H F, OLERO B P, PERKINS J N. Nimbus satellites:setting the stage for mission to planet Earth[J]. Eos, Transactions American Geophysical Union, 1993, 74(26):281-285. DOI:10.1029/93EO00286. [50] NICHOLS D A. The defense meteorological satellite program[J]. Optical Engineering, 1975, 14(4):144273. DOI:10.1117/12.7971832. [51] KAWANISHI T, SEZAI T, ITO Y, et al. The advanced microwave scanning radiometer for the earth observing system (AMSR-E), NASDA's contribution to the EOS for global energy and water cycle studies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2):184-194. DOI:10.1109/TGRS.2002.808331. [52] KACHI M, IMAOKA K, FUJII H, et al. Status of GCOM-W1/AMSR2 development and science activities[C]//Proceedings of SPIE 7106, Sensors, Systems, and Next-Generation Satellites XII. Cardiff:SPIE, 2008:71060P. DOI:10.1117/12.801228. [53] IMAOKA K, MAEDA T, KACHI M, et al. Status of AMSR2 instrument on GCOM-W1[C]//Proceedings of SPIE 8528, Earth Observing Missions and Sensors:Development, Implementation, and Characterization II. Kyoto:SPIE, 2012:852815. DOI:10.1117/12.977774. [54] GAISER P W, ST GERMAIN K M S, TWAROG E M, et al. The WindSat spaceborne polarimetric microwave radiometer:sensor description and early orbit performance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11):2347-2361. DOI:10.1109/TGRS.2004.836867. [55] BARRE H M J P, DUESMANN B, KERR Y H. SMOS:The mission and the system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(3):587-593. DOI:10.1109/TGRS.2008.916264. [56] 王蕊,史顺文,陆文.全极化微波辐射计海面风场反演实验[J].遥感信息, 2014, 29(4):85-90, 97. WANG Rui, SHI Shunwen, LU Wen. Experiment on polarimetric microwave radiometer sea surface wind vector retrieval[J]. Remote Sensing Information, 2014, 29(4):85-90, 97. [57] 杨虎,李小青,游然,等.风云三号微波成像仪定标精度评价及业务产品介绍[J].气象科技进展, 2013, 3(4):136-143. YANG Hu, LI Xiaoqing, YOU Ran, et al. Environmental data records from FengYun-3B microwave radiation imager[J]. Advances in Meteorological Science and Technology, 2013, 3(4):136-143. [58] YANG Hu, WENG Fuzhong, LV Liqing, et al. The FengYun-3 microwave radiation imager on-orbit verification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11):4552-4560. DOI:10.1109/TGRS.2011.2148200. [59] MENENTI M, JIA Li, MANCINI M, et al. High elevation energy and water balance:the roles of surface albedo and temperature[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(4):70-78. DOI:10.11947/j.JGGS.2020.0407. [60] ZHANG Yongfang, MIAO Jungang, ZHAO Haibo, et al. A five-frequency bands quasi-optical multiplexer for geostationary orbit microwave radiometer[C]//Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium. Munich:IEEE, 2012:4676-4679. DOI:10.1109/IGARSS.2012.6350422. [61] SARAF A K, CHOUDHURY S. Satellite detects pre-earthquake thermal anomalies associated with past major earthquakes[C]//Proceedings of Map Asia Conference 2004. Beijing:[s.n.], 2004:40. [62] SARAF A K, CHOUDHURY S. Thermal remote sensing technique in the study of pre-earthquake thermal anomalies[J]. Journal of Indian Geophysical Union, 2005, 9(3):197-207. [63] MAKI K I, TAKANO T, SOMA E, et al. An experimental study of microwave emissions from compression failure of rocks[J]. Zisin (Journal of the Seismological Society of Japan Ser. Ⅱ), 2006, 58(4):375-384. [64] MAEDA T, TAKANO T. Detection algorithm of earthquake-related rock failures from satellite-borne microwave radiometer data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4):1768-1776. DOI:10.1109/TGRS.2009.2036008. [65] MAEDA T, TAKANO T. Detection of microwave signals associated with rock failures in an earthquake from satellite-borne microwave radiometer data[C]//Proceedings of 2009 IEEE International Geoscience and Remote Sensing Symposium. Cape Town:IEEE, 2009:III-61-III-64. DOI:10.1109/IGARSS.2009.5418159. [66] 陈昊,金亚秋.星载微波辐射计对玉树地震岩石破裂辐射异常的初步检测[J].遥感技术与应用, 2010, 25(6):860-866. CHEN Hao, JIN Yaqiu. A preliminary detection of anomalous radiation of rock failures related with Yushu earthquake by using satellite-borne microwave radiometers[J]. Remote Sensing Technology and Application, 2010, 25(6):860-866. [67] SINGH R P, KUMAR J S, ZLOTNICKI J, et al. Satellite detection of carbon monoxide emission prior to the Gujarat earthquake of 26 January 2001[J]. Applied Geochemistry, 2010, 25(4):580-585. DOI:10.1016/j.apgeochem.2010.01.014. [68] SINGH R P, MEHDI W, GAUTAM R, et al. Precursory signals using satellite and ground data associated with the Wenchuan Earthquake of 12 May 2008[J]. International Journal of Remote Sensing, 2010, 31(13):3341-3354. DOI:10.1080/01431161.2010.487503. [69] MA Yuntao, LIU Shanjun, WU Lixin, et al. Two-step method to extract seismic microwave radiation anomaly:case study of Ms 8.0 Wenchuan earthquake[J]. Earthquake Science, 2011, 24(6):577-582. DOI:10.1007/s11589-011-0819-x. [70] LIU Shanjun, LIU Xin, MA Yuntao, et al. Microwave radiation anomaly of Yushu earthquake and its mechanism[C]//Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium. Munich:IEEE, 2012:1192-1195. DOI:10.1109/IGARSS.2012.6351334. [71] JIE Y, GUANGMENG G. Preliminary analysis of thermal anomalies before the 2010 Baja California M 7.2 earthquake[J]. Atmósfera, 2013, 26(4):473-477. DOI:10.1016/S0187-6236(13)71089-0. [72] 钟美娇,张元生,郭晓,等.卫星热红外和微波遥感资料在地震预报中的应用研究[J].地震工程学报, 2014, 36(4):1059-1063. ZHONG Meijiao, ZHANG Yuansheng, GUO Xiao, et al. Application of satellite thermal infrared and microwave remote sensing data to earthquake prediction[J]. China Earthquake Engineering Journal, 2014, 36(4):1059-1063. [73] 黄志东,钟儒祥,朱爱军. FY-3卫星监测四川芦山地震前后热异常[J].华北地震科学, 2014, 32(3):19-23, 34. HUANG Zhidong, ZHONG Ruxiang, ZHU Aijun. FY-3 satellite monitoring of the thermal abnormality before and after 2013Ms 7.0 Lushan Earthquake[J]. North China Earthquake Sciences, 2014, 32(3):19-23, 34. [74] 张宾,秦凯,吴涛,等.地震前卫星遥感微波辐射异常统计分析:以堪察加半岛为例[J].地震学报, 2018, 40(1):98-107. DOI:10.11939/jass.20170089. ZHANG Bin, QIN Kai, WU Tao, et al. Statistical analysis of microwave radiation anomaly before earthquake:a case study of Kamchatka Peninsula[J]. Acta Seismologica Sinica, 2018, 40(1):98-107. DOI:10.11939/jass.20170089. [75] JING Feng, SINGH R P, SUN Ke, et al. Passive microwave response associated with two main earthquakes in Tibetan Plateau, China[J]. Advances in Space Research, 2018, 62(7):1675-1689. DOI:10.1016/j.asr.2018.06.030. [76] JING Feng, SINGH R P, SHEN Xuhui. Land-atmosphere-meteorological coupling associated with the 2015 Gorkha (M 7.8) and Dolakha (M 7.3) Nepal earthquakes[J]. Geomatics, Natural Hazards and Risk, 2019, 10(1):1267-1284. DOI:10.1080/19475705.2019.1573629. [77] JING Feng, SINGH R P, CUI Yueju, et al. Microwave brightness temperature characteristics of three strong earthquakes in Sichuan province, China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:513-522. DOI:10.1109/JSTARS.2020.2968568. [78] 耿乃光,崔承禹,邓明德.岩石破裂实验中的遥感观测与遥感岩石力学的开端[J].地震学报, 1992, 14(S1):645-652. GENG Naiguang, CUI Chengyu, DENG Mingde. Remote sensing observations in rock fracture experiments and the beginning of remote sensing rock mechanics[J]. Acta Seismologica Sinica, 1992, 14(S1):645-652. [79] 邓明德,樊正芳,崔承禹,等.无源微波遥感用于地震预报的实验研究[J].红外与毫米波学报, 1995, 14(6):401-406. DENG Mingde, FAN Zhengfang, CUI Chengyu, et al. The experimental study for earthquake prediction by passive microwave remote sensing[J]. Journal of Infrared and Millimeter Waves, 1995, 14(6):401-406. [80] WU Lixin, ZHENG Shuo, DE SANTIS A, et al. Geosphere coupling and hydrothermal anomalies before the 2009Mw6.3 L'Aquila earthquake in Italy[J]. Natural Hazards and Earth System Sciences, 2016, 16(8):1859-1880. DOI:10.5194/nhess-16-1859-2016. [81] LIU Shanjun, XU Zhongyin, WEI Jialei, et al. Experimental study on microwave radiation from deforming and fracturing rock under loading outdoor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9):5578-5587. DOI:10.1109/TGRS.2016.2569419. [82] 毛文飞,吴立新,刘善军,等.干、湿沙层对岩石受力微波辐射影响的实验对比[J].东北大学学报(自然科学版), 2018, 39(5):710-715. MAO Wenfei, WU Lixin, LIU Shanjun, et al. Experiment comparison on microwave radiation from stressed rock covered by materials:dry or humid Sands[J]. Journal of Northeastern University (Natural Science), 2018, 39(5):710-715. [83] SARAF A K, RAWAT V, CHOUDHURY S, et al. Advances in understanding of the mechanism for generation of earthquake thermal precursors detected by satellites[J]. International Journal of Applied Earth Observation and Geoinformation, 2009, 11(6):373-379. DOI:10.1016/j.jag.2009.07.003. [84] MIENERT J, POSEWANG J, BAUMANN M. Gas hydrates along the northeastern Atlantic margin:possible hydrate-bound margin instabilities and possible release of methane[J]. Geological Society, London, Special Publications, 1998, 137(1):275-291. DOI:10.1144/GSL.SP.1998.137.01.22. [85] QI Yuan, WU Lixin, DING Yifan, et al. Microwave brightness temperature (MBT) background in Bayan Har Block, Qinghai-Tibet Plateau and its importance in searching for seismic MBT anomalies[J]. Remote Sensing, 2022, 14(3):534. DOI:10.3390/rs14030534. [86] TOBLER W R. A computer movie simulating urban growth in the Detroit region[J]. Economic Geography, 1970, 46(S1):234-240. [87] GOODCHILD M F. GIScience, geography, form, and process[J]. Annals of the Association of American Geographers, 2004, 94(4):709-714. [88] QI Yuan, WU Lixin, HE Miao, et al. Spatio-temporally weighted two-step method for retrieving seismic MBT anomaly:May 2008 Wenchuan earthquake sequence being a case[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:382-391. DOI:10.1109/JSTARS.2019.2962719. [89] QI Yuan, WU Lixin, DING Yifan, et al. Extraction and discrimination of MBT anomalies possibly associated with the Mw 7.3 Maduo (Qinghai, China) earthquake on 21 May 2021[J]. Remote Sensing, 2021, 13(22):4726. DOI:10.3390/rs13224726. [90] QI Yuan, WU Lixin, MAO Wenfei, et al. Discriminating possible causes of microwave brightness temperature positive anomalies related with May 2008 Wenchuan earthquake sequence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3):1903-1916. DOI:10.1109/TGRS.2020.3004404. [91] QI Yuan, WU Lixin, DING Yifan, et al. Microwave brightness temperature anomalies associated with the 2015Mw 7.8 Gorkha and Mw 7.3 Dolakha earthquakes in Nepal[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:4500611. DOI:10.1109/TGRS.2020.3036079. [92] FREUND F. Toward a unified solid state theory for pre-earthquake signals[J]. Acta Geophysica, 2010, 58(5):719-766. DOI:10.2478/s11600-009-0066-x. [93] DING Yifan, QI Yuan, WU Lixin, et al. Discriminating the multi-frequency microwave brightness temperature anomalies relating to 2017Mw 7.3 Sarpol Zahab (Iran-Iraq Border) Earthquake[J]. Frontiers in Earth Science, 2021, 9:656216. DOI:10.3389/feart.2021.656216. [94] QI Yuan, WU Lixin, MAO Wenfei, et al. Satellite passive microwave remote sensing for seismic thermal anomaly:phenomena and mechanisms[C]//Proceedings of 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels:IEEE, 2021:8696-8699. DOI:10.1109/IGARSS47720.2021.9553690. [95] QI Yuan, MIAO Zelang, WU Lixin, et al. Seismic microwave brightness temperature anomaly detection using multitemporal passive microwave satellite images:ideas and limits[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:6792-6806. DOI:10.1109/JSTARS.2021.3093819. [96] 毛文飞.岩石受压微波辐射及介电变化的实验观测与机理分析[D].沈阳:东北大学, 2020. MAO Wenfei. Experimental observation and mechanism analysis of microwave radiation and dielectric changes of rock under compression[D]. Shenyang:Northeastern University, 2020. [97] GAO Xiang, LIU Shanjun, WU Lixin, et al. The variation in microwave brightness temperature of granite pressed under weak background radiation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(2):1369-1381. DOI:10.1109/TGRS.2020.2994439. [98] GAO Xiang, LIU Shanjun, WU Lixin, et al. The anisotropy and polarization of stress-induced microwave radiation changes in granite and their significance for seismic remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9):7603-7617. DOI:10.1109/TGRS.2020.3034126. [99] MAO Wenfei, WU Lixin, QI Yuan. Impact of compressive stress on microwave dielectric properties of feldspar specimen[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2):1398-1408. DOI:10.1109/TGRS.2019.2946155. [100] MAO Wenfei, WU Lixin, XU Youyou, et al. Change in diorite microwave dielectric property at the free end upon compressive stress application to the other end[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:4506613. DOI:10.1109/TGRS.2021.3125992. [101] PULINETS S, OUZOUNOV D. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model-An unified concept for earthquake precursors validation[J]. Journal of Asian Earth Sciences, 2011, 41(4-5):371-382. DOI:10.1016/j.jseaes.2010.03.005. [102] WU Lixin, LIU Shanjun. Remote sensing rock mechanics and earthquake thermal infrared anomalies[M]//JEDLOVEC G. Advances in Geoscience and Remote Sensing. Vukovar:IntechOpen, 2009. DOI:10.5772/8292. [103] WU Lixin, QIN Kai, LIU Shanjun, et al. Importance of lithosphere-coversphere-atmosphere coupling to earthquake anomaly recognition[C]//Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium. Munich:IEEE, 2012:3532-3535. DOI:10.1109/IGARSS.2012.6350657. [104] WU Lixin, QIN Kai, LIU Shanjun. GEOSS-based thermal parameters analysis for earthquake anomaly recognition[J]. Proceedings of the IEEE, 2012, 100(10):2891-2907. DOI:10.1109/JPROC.2012.2184789. [105] QIN Kai, WU Lixin, DE SANTIS A, et al. Quasi-synchronous multi-parameter anomalies associated with the 2010-2011 New Zealand earthquake sequence[J]. Natural Hazards and Earth System Sciences, 2012, 12(4):1059-1072. DOI:10.5194/nhess-12-1059-2012. [106] QIN Kai, WU Lixin, ZHENG Shuo, et al. A deviation-time-space-thermal (DTS-T) method for global earth observation system of systems (GEOSS)-based earthquake anomaly recognition:criterions and quantify indices[J]. Remote Sensing, 2013, 5(10):5143-5151. DOI:10.3390/rs5105143. [107] QIN Kai, ZHENG Shuo, WU Lixin, et al. Quasi-synchronous multi-parameter anomalies before Wenchuan and Yushu earthquakes in China[J]. The European Physical Journal Special Topics, 2021, 230(1):263-274. DOI:10.1140/epjst/e2020-000253-3. [108] WIGNERON J P, CHANZY A, CALVET J C, et al. A simple algorithm to retrieve soil moisture and vegetation biomass using passive microwave measurements over crop fields[J]. Remote Sensing of Environment, 1995, 51(3):331-341. DOI:10.1016/0034-4257(94)00081-W. [109] CALVET J C, WIGNERON J P, WALKER J, et al. Sensitivity of passive microwave observations to soil moisture and vegetation water content:L-band to W-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(4):1190-1199. DOI:10.1109/TGRS.2010.2050488. [110] HOLMES T R H, DE JEU R A M, OWE M, et al. Land surface temperature from Ka band (37GHz) passive microwave observations[J]. Journal of Geophysical Research:Atmospheres, 2009, 114(D4):D04113. DOI:10.1029/2008JD010257. [111] 吴立新,毛文飞,刘善军,等.岩石受力红外与微波辐射变化机理及地应力遥感关键问题[J].遥感学报, 2018, 22(S1):146-161. DOI:10.11834/jrs.20187256. WU Lixin, MAO Wenfei, LIU Shanjun, et al. Mechanisms of altering infrared-microwave radiation from stressed rock and key issues on crust stress remote sensing[J]. Journal of Remote Sensing, 2018, 22(S1):146-161. DOI:10.11834/jrs.20187256. [112] YU Jieqing, WU Lixin, ZI Guojie, et al. SDOG-based multi-scale 3D modeling and visualization on global lithosphere[J]. Science China Earth Sciences, 2012, 55(6):1012-1020. DOI:10.1007/s11430-012-4387-2. [113] YU Jieqing, WU Lixin, LI Zhifeng, et al. An SDOG-based intrinsic method for three-dimensional modelling of large-scale spatial objects[J]. Annals of GIS, 2012, 18(4):267-278. DOI:10.1080/19475683.2012.727865. [114] 吴立新,余接情,杨宜舟,等.基于地球系统空间格网的全球大数据空间关联与共享服务[J].测绘科学技术学报, 2013, 30(4):409-415, 438. WU Lixin, YU Jieqing, YANG Yizhou, et al. ESSG-based global big data spatially correlate and its share service[J]. Journal of Geomatics Science and Technology, 2013, 30(4):409-415, 438. |
[1] | CHENG Jiehai, HUANG Zhongyi, WANG Jianru, HE Shi. The automatic determination method of the optimal segmentation result of high-spatial resolution remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 658-667. |
[2] | LIANG Zheheng, LI Xiao, DENG Peng, SHENG Sen, JIANG Fuquan. Remote sensing image change detection fusion method integrating multi-scale feature attention [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 668-676. |
[3] | BAI Kun, MU Xiaodong, CHEN Xuebing, ZHU Yongqing, YOU Xuanang. Unsupervised remote sensing image scene classification based on semi-supervised learning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 691-702. |
[4] | HUANG Mingyi, WU Jun, GAO Jiongli. Seamless spherical video generation for multi-head panoramic camera(MPC) [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 703-717. |
[5] | WANG Dandi, XING Shuai, XU Qing, LIN Yuzhun, LI Pengcheng. Automatic sea-land waveform classification method for single-wavelength airborne LiDAR bathymetry [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 750-761. |
[6] | ZHANG Zhimin. Study of annual mass balance estimation in the Tibetan plateau glaciers based on remote sensing albedo [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 781-781. |
[7] | LI Yongqiang, LI Pengpeng, DONG Yahan, FAN Huilong. Automatic extraction and classification of pole-like objects from vehicle LiDAR point cloud [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 724-735. |
[8] | WANG Jingxue, LIU Suyan, WANG Weixi. A checking algorithm for pair-wise line matching based on collinearity constraint and matching redundancy [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 746-756. |
[9] | ZHAN Zongqian, HU Mengqi, MAN Yiyun. Multi-scale region growing point cloud filtering method based on surface fitting [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 757-766. |
[10] | HAN Bin, WU Yiquan. Robust estimation algorithm of active contour model for river extraction in SAR images [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 777-786. |
[11] | DENG Ruizhe, CHEN Qihao, CHEN Qi, LIU Xiuguo. A deformable feature pyramid network for ship detection from remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 787-797. |
[12] | HUANG Liang. Research on change detection technology in multi-temporal remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 801-801. |
[13] | WU Wenhao, ZHANG Lei, LI Tao, LONG Sichun, DUAN Meng, ZHOU Zhiwei, ZHU Chuanguang, JIANG Tingchen. Coregistration scheme and error analysis of multi-mode SAR image based on geometric coregistration [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1439-1451. |
[14] | ZHAO Shengyin, AN Ru, ZHU Meiru. Urban change detection by aerial remote sensing using combining features of pixel-depth-object [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1452-1463. |
[15] | LIU Zhaoxin, ZHAO Liaoying, LI Xiaorun, CHEN Shuhan. Linear feature detection for hyperspectral subpixel mapping [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1464-1474. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||