[1] SNAVELY N, SEITZ S M, SZELISKI R. Photo tourism:exploring photo collections in 3D[J]. ACM Transactions on Graphics, 25(3):835-846. [2] AGARWAL S, FURUKAWA Y, SNAVELY N, et al. Building Rome in a day[J]. Communications of the ACM, 2011, 54(10):105-112. [3] WU Changchang. Towards linear-time incremental structure from motion[C]//Proceedings of 2013 International Conference on 3D Vision. Seattle:IEEE, 2013:127-134. [4] SCHONBERGER J L, FRAHM J M. Structure-from-motion revisited[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016:4104-4113. [5] WANG X, XIAO T, KASTEN Y.A hybrid global structure from motion method for synchronously estimating global rotations and global translations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 174:35-55. [6] XIAO Teng, YAN Qingsong, MA Weile, et al. Progressive structure from motion by iteratively prioritizing and refining match pairs[J]. Remote Sensing, 2021, 13(12):2340. [7] JIANG S, JIANG C, JIANG W. Efficient structure from motion for large-scale UAV images:a review and a comparison of SfM tools[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167:230-251. [8] 许彪, 董友强, 张力, 等. 分区优化混合SfM方法[J]. 测绘学报, 2022, 51(1):115-126.DOI:10.11947/j.AGCS.2021.20210105. XU Biao, DONG Youqiang, ZHANG Li, et al. A hybrid SfM method based on partition optimization[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1):115-126.DOI:10.11947/j.AGCS.2021.20210105. [9] 李清泉, 邵成立, 万剑华, 等. 优视摄影测量与泛在实景三维数据采集:以实景三维青岛为例[J]. 武汉大学学报(信息科学版), 2022, 47(10):1587-1597. LI Qingquan, SHAO Chengli, WAN Jianhua, et al. Optimized views photogrammetry and ubiquitous real 3D data acquisition with the application case in Qingdao[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10):1587-1597. [10] LYU Jingguo, YANG Xingbin, ZHANG Danlu, et al. High-resolution remote sensing image semi-global matching method considering geometric constraints of connection points and image texture information [J]. Journal of Geodesy and Geoinformation Science, 2021,4(4):97-112. [11] BHOWMICK B, PATRA S, CHATTERJEE A, et al.Divide and conquer:a hierarchical approach to large-scale structure-from-motion[J]. Computer Vision and Image Understanding, 2017, 157:190-205. [12] CHEN Shu, LIANG Luming, OUYANG Jianquan. Accurate structure from motion using consistent cluster merging[J].Multimedia Tools and Applications, 2022, 81(17):24913-24935. [13] CHEN Yu, SHEN Shuhan, CHEN Yisong, et al. Graph-based parallel large scale structure from motion[J]. Pattern Recognition, 2020, 107:107537. [14] CUI Hainan, SHEN Shuhan, GAO Xiang, et al. CSFM:Community-based structure from motion[C]//Proceedings of 2017 IEEE International Conference on Image Processing.Beijing:IEEE, 2017:4517-4521. [15] FANG Meiling, POLLOK T, QU Chengchao. Merge-SfM:merging partial reconstructions[C]//Proceedings of the 30th British Machine Vision Conference. Cardiff:British Machine Vision Association,2019:29. [16] XIE Xiuchuan, YANG Tao, LI Dongdong, et al. Hierarchical clustering-aligning framework based fast large-scale 3D reconstruction using aerial imagery[J]. Remote Sensing, 2019, 11(3):315. [17] ZHU S. Accurate, scalable and parallel structure from motion[D].Hong Kong:Hong Kong University of Science and Technology, 2017. [18] ZHU Siyu, ZHANG Runze, ZHOU Lei, et al. Very large-scale global SfM by distributed motion averaging[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE, 2018:4568-4577. [19] FARENZENA M, FUSIELLO A, GHERARDI R. Structure-and-motion pipeline on a hierarchical cluster tree[C]//Proceedings of 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops. Kyoto:IEEE, 2009:1489-1496. [20] GHERARDI R, FARENZENA M, FUSIELLO A. Improving the efficiency of hierarchical structure-and-motion[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Francisco:IEEE, 2010:1594-1600. [21] TOLDO R, GHERARDI R, FARENZENA M, et al. Hierarchical structure-and-motion recovery from uncalibrated images[J]. Computer Vision and Image Understanding, 2015, 140:127-143. [22] CUI Zhaopeng, JIANG Nianjuan, TANG Chengzhou, et al. Linear global translation estimation with feature tracks[C]//Proceedings of 2015 British Machine Vision Conference. Swansea:British Machine Vision Association, 2015. [23] SHI Jianbo, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905. [24] KASTEN Y, GEIFMAN A, GALUN M, et al. Algebraic characterization of essential matrices and their averaging in multiview settings[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul:IEEE, 2019:5895-5903. [25] MOULON P, MONASSE P, PERROT R, et al. OpenMVG:open multiple view geometry[C].Proceedings of 2016 International Workshop on Reproducible Research in Pattern Recognition. Cham:Springer, 2016:60-74. [26] BOYD S, PARIKH N, CHU E, et al.Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends ® in Machine Learning, 2010, 3(1):1-122. [27] TRIGGS B, MCLAUCHLAN P F, HARTLEY R I, et al.Bundle adjustment-a modern synthesis[C]//Proceedings of 1999 International workshop on vision algorithms. Berlin:Springer,1999:298-372. [28] YAO Yao, LUO Zixin, LI Shiwei, et al. BlendedMVS:a large-scale dataset for generalized multi-view stereo networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle:IEEE, 2020:1790-1799. |