Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (10): 1955-1966.doi: 10.11947/j.AGCS.2024.20240068.
• Remote Sensing Large Model • Previous Articles
Mi WANG1,(), Xu CHENG1(), Jun PAN1, Yingdong PI1, Jing XIAO2
Received:
2024-02-18
Published:
2024-11-26
Contact:
Xu CHENG
E-mail:wangmi@whu.edu.cn;xucheng@whu.edu.cn
About author:
WANG Mi (1974—), male, PhD, professor, PhD supervisor, majors in high precision satellite remote sensing technology. E-mail: wangmi@whu.edu.cn
Supported by:
CLC Number:
Mi WANG, Xu CHENG, Jun PAN, Yingdong PI, Jing XIAO. Large models enabling intelligent photogrammetry: status, challenges and prospects[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1955-1966.
[1] | 李德仁. 摄影测量与遥感的现状及发展趋势[J]. 武汉测绘科技大学学报, 2000, 25(1):1-6. |
LI Deren. Towards photogrammetry and remote sensing: status and future development[J]. Journal of Wuhan Technical University of Surveying and Mapping, 2000, 25(1):1-6. | |
[2] | 宁津生, 杨凯. 从数字化测绘到信息化测绘的测绘学科新进展[J]. 测绘科学, 2007, 32(2):5-11. |
NING Jinsheng, YANG Kai. The newest progress of surveying & mapping discipline from digital style to informatization stage[J]. Science of Surveying and Mapping, 2007, 32(2):5-11. | |
[3] |
李德仁. 从测绘学到地球空间信息智能服务科学[J]. 测绘学报, 2017, 46(10):1207-1212. DOI:.
doi: 10.11947/j.AGCS.2017.20170263 |
LI Deren. From geomatics to geospatial intelligent service science[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1207-1212. DOI:.
doi: 10.11947/j.AGCS.2017.20170263 |
|
[4] |
张永军, 万一, 史文中, 等. 多源卫星影像的摄影测量遥感智能处理技术框架与初步实践[J]. 测绘学报, 2021, 50(8):1068-1083. DOI:.
doi: 10.11947/j.AGCS.2021.20210079 |
ZHANG Yongjun, WAN Yi, SHI Wenzhong, et al. Technical framework and preliminary practices of photogrammetric remote sensing intelligent processing of multi-source satellite images[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1068-1083. DOI:.
doi: 10.11947/j.AGCS.2021.20210079 |
|
[5] | DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Confe-rence on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 248-255. |
[6] | BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[J]. Advances in neural information processing systems, 2020, 33:1877-1901. |
[7] | BOMMASANI R, HUDSON D A, ADELI E, et al. On the opportunities and risks of foundation models[EB/OL]. [2023-11-28]. http://arxiv.org/abs/2108.07258. |
[8] |
龚健雅, 季顺平. 摄影测量与深度学习[J]. 测绘学报, 2018, 47(6):693-704. DOI:.
doi: 10.11947/j.AGCS.2018.20170640 |
GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):693-704. DOI:.
doi: 10.11947/j.AGCS.2018.20170640 |
|
[9] | 张良培, 张乐飞, 袁强强. 遥感大模型:进展与前瞻[J]. 武汉大学学报(信息科学版), 2023, 48(10):1574-1581. |
ZHANG Liangpei, ZHANG Lefei, YUAN Qiangqiang. Large remote sensing model: progress and prospects[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10):1574-1581. | |
[10] | 杨必胜, 陈一平, 邹勤. 从大模型看测绘时空信息智能处理的机遇和挑战[J]. 武汉大学学报(信息科学版), 2023, 48(11):1756-1768. |
YANG Bisheng, CHEN Yiping, ZOU Qin. Opportunities and challenges of spatiotemporal information intelligent processing of surveying and mapping in the era of large models[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11):1756-1768. | |
[11] | DETONE D, MALISIEWICZ T, RABINOVICH A. SuperPoint: self-supervised interest point detection and description[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018: 224-236. |
[12] | SARLIN P E, DETONE D, MALISIEWICZ T, et al. SuperGlue: learning feature matching with graph neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 4938-4947. |
[13] | 赵伍迪, 李山山, 李安, 等. 结合深度学习的高光谱与多源遥感数据融合分类[J]. 遥感学报, 25(7):1489-1502. |
ZHAO Wudi, LI Shanshan, LI An, et al. Deep fusion of hyperspectral images and multi-source remote sensing data for classification with convolutional neural network[J]. National Remote Sensing Bulletin, 25(7):1489-1502. | |
[14] | YANG Y, JIAO L, LIU F, et al. An explainable spatial-frequency multi-scale transformer for remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5907515. |
[15] |
张祖勋, 姜慧伟, 庞世燕, 等. 多时相遥感影像的变化检测研究现状与展望[J]. 测绘学报, 2022, 51(7):1091-1107. DOI:.
doi: 10.11947/j.AGCS.2022.20220070 |
ZHANG Zuxun, JIANG Huiwei, PANG Shiyan, et al. Review and prospect in change detection of multi-temporal remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1091-1107. DOI:.
doi: 10.11947/j.AGCS.2022.20220070 |
|
[16] | SU Hang, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 945-953. |
[17] | KALOGERAKIS E, AVERKIOU M, MAJI S, et al. 3D shape segmentation with projective convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 3779-3788. |
[18] | WU Zhirong, SONG Shuran, KHOSLA A, et al. 3D ShapeNets: a deep representation for volumetric shapes[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1912-1920. |
[19] | BROCK A, LIM T, RITCHIE J, et al. Generative and discriminative voxel modeling with convolutional neural networks[EB/OL]. [2024-02-15]. https://arxiv.org/abs/1608.04236. |
[20] | CHARLES R Q, HAO Su, MO Kaichun, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 652-660. |
[21] | QI C R, YI Li, SU Hao, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[EB/OL]. [2024-02-15]. https://arxiv.org/abs/1706.02413v1. |
[22] | HANOCKA R, HERTZ A, FISH N, et al. MeshCNN: a network with an edge[J]. ACM Transactions on Graphics, 2019, 38(4):1-12. |
[23] | YAO Yao, LUO Zixin, LI Shiwei, et al. MVSNet: depth inference for unstructured multi-view stereo[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 767-783. |
[24] | GU Xiaodong, FAN Zhiwen, ZHU Siyu, et al. Cascade cost volume for high-resolution multi-view stereo and stereo matching[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Seattle: IEEE, 2020: 2495-2504. |
[25] | YANG Jiayu, MAO Wei, ALVAREZ J M, et al. Cost volume pyramid based depth inference for multi-view stereo[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 4877-4886. |
[26] | LUO Keyang, GUAN Tao, JU Lili, et al. P-MVSNet: learning patch-wise matching confidence aggregation for multi-view stereo[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 10452-10461. |
[27] | XU Qingshan, SU Wanjuan, QI Yuhang, et al. Learning inverse depth regression for pixelwise visibility-aware multi-view stereo networks[J]. International Journal of Computer Vision, 2022, 130(8):2040-2059. |
[28] | ZHANG Jingyang, LI Shiwei, LUO Zixin, et al. Vis-MVSNet: visibility-aware multi-view stereo network[J]. International Journal of Computer Vision, 2023, 131(1):199-214. |
[29] | GKIOXARI G, JOHNSON J, MALIK J. Mesh R-CNN[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9785-9795. |
[30] | EIGEN D, PUHRSCH C, FERGUS R. Depth map prediction from a single image using a multi-scale deep network[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 2366-2374. |
[31] | CHOY C B, XU Danfei, GWAK J, et al. 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction[M]//Lecture notes in computer science. Cham: Springer International Publishing, 2016: 628-644. |
[32] | FAN Haoqiang, SU Hao, GUIBAS L. A point set generation network for 3D object reconstruction from a single image[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 605-613. |
[33] | WANG Nanyang, ZHANG Yinda, LI Zhuwen, et al. Pixel2Mesh: generating 3D mesh models from single RGB images[M]//Lecture notes in computer science. Cham: Springer International Publishing, 2018: 55-71. |
[34] | RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2103.00020. |
[35] | ZHAI Xiaohua, WANG Xiao, MUSTAFA B, et al. LiT: zero-shot transfer with locked-image text tuning[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 18123-18133. |
[36] | TSIMPOUKELLI M, MENICK J L, CABI S, et al. Multimodal few-shot learning with frozen language models[J]. Advances in Neural Information Processing Systems, 2021, 34:200-212. |
[37] | ALAYRAC J B, DONAHUE J, LUC P, et al. Flamingo: a visual language model for few-shot learning[J]. Advances in Neural Information Processing Systems, 2022, 35:23716-23736. |
[38] | YAO Lewei, HUANG Runhu, HOU Lu, et al. FILIP: fine-grained interactive language-image pre-training[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2111.07783. |
[39] | WANG X, ZHANG X, CAO Y, et al. SegGPT: segmenting everything in context[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2304.03284. |
[40] | KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2304.02643v1. |
[41] | LYU Chenyang, WU Minghao, WANG Longyue, et al. Macaw-LLM: multi-modal language modeling with image, audio, video, and text integration[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2306.09093v1. |
[42] | GIRDHAR R, EL-NOUBY A, LIU Zhuang, et al. ImageBind one embedding space to bind them all[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 15180-15190. |
[43] | ZHANG Yiyuan, GONG Kaixiong, ZHANG Kaipeng, et al. Meta-transformer: a unified framework for multimodal learning[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2307.10802v1. |
[44] | XUE Le, GAO Mingfei, XING Chen, et al. ULIP: learning a unified representation of language, images, and point clouds for 3D understanding[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 1179-1189. |
[45] | ZHOU J, WANG J, MA B, et al. Uni3D: exploring unified 3D representation at scale[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2310.06773. |
[46] | SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1):60. |
[47] | TRABUCCO B, DOHERTY K, GURINAS M, et al. Effective data augmentation with diffusion models[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2302.07944v2. |
[48] | SHUMAILOV I, SHUMAYLOV Z, ZHAO Yiren, et al. The curse of recursion: training on generated data makes models forget[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2305.17493v3. |
[49] | SUN Xian, WANG Peijin, LU Wanxuan, et al. RingMo: a remote sensing foundation model with masked image modeling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5612822. |
[50] | JIA Chao, YANG Yinfei, XIA Ye, et al. Scaling up visual and vision-language representation learning with noisy text supervision[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2102.05918. |
[51] | XIANG Shouxing, YE Xi, XIA Jiazhi, et al. Interactive correction of mislabeled training data[C]//Proceedings of 2019 IEEE Confe-rence on Visual Analytics Science and Technology. Vancouver: IEEE, 2019: 57-68. |
[52] | REIF E, KAHNG M, PETRIDIS S. Visualizing linguistic diversity of text datasets synthesized by large language models[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2305.11364v2. |
[53] | KOLVE E, MOTTAGHI R, HAN W, et al. AI2-THOR: an interactive 3D environment for visual AI[EB/OL]. [2024-02-15]. https://arxiv.org/abs/1712.05474v4. |
[54] | LI Chengshu, XIA Fei, MARTÍN-MARTÍN R, et al. iGibson 2.0: object-centric simulation for robot learning of everyday household tasks[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2108.03272v4. |
[55] | RAMRAKHYA R, UNDERSANDER E, BATRA D, et al. Habitat-web: learning embodied object-search strategies from human demonstrations at scale[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 5173-5183. |
[56] | SZOT A, CLEGG A, UNDERSANDER E, et al. Habitat 2.0: training home assistants to rearrange their habitat[J]. Advances in Neural Information Processing Systems, 2021, 34:251-266. |
[57] | DEITKE M, SCHWENK D, SALVADOR J, et al. Objaverse: a universe of annotated 3D objects[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 13142-13153. |
[58] | LING Lu, SHENG Yichen, TU Zhi, et al. DL3DV-10K: a large-scale scene dataset for deep learning-based 3D vision[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2312.16256v2. |
[59] | YANG Y, WU X, HE T, et al. SAM3D: segment anything in 3D scenes[EB/OL]. [2023-11-27]. http://arxiv.org/abs/2306.03908. |
[60] | CEN J, ZHOU Z, FANG J, et al. Segment anything in 3D with NeRFs[EB/OL]. [2023-11-27]. http://arxiv.org/abs/2304.12308. |
[61] | MARI R, FACCIOLO G, EHRET T. Sat-NeRF: learning multi-view satellite photogrammetry with transient objects and shadow modeling using RPC cameras[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New Orleans: IEEE, 2022: 1311-1321. |
[62] | XU Linning, XIANGLI Yuanbo, PENG Sida, et al. Grid-guided neural radiance fields for large urban scenes[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023. |
[63] | TANCIK M, CASSER V, YAN Xinchen, et al. Block-NeRF: scalable large scene neural view synthesis[C]//2022 IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 8248-8258. |
[64] | LIALIN V, DESHPANDE V, RUMSHISKY A. Scaling down to scale up: a guide to parameter-efficient fine-tuning[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2303.15647v1. |
[65] | HU J E, SHEN Yelong, WALLIS P, et al. LoRA: low-rank adaptation of large language models[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2106.09685. |
[66] | HOULSBY N, GIURGIU A, JASTRZEBSKI S, et al. Parameter-efficient transfer learning for NLP[EB/OL]. [2024-02-15]. https://arxiv.org/abs/1902.00751. |
[67] | PFEIFFER J, RÜCKLÉ A, POTH C, et al. AdapterHub: a framework for adapting transformers[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2007.07779v3. |
[68] | WANG Xinlong, WANG Wen, CAO Yue, et al. Images speak in images: a generalist painter for in-context visual learning[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 6830-6839. |
[69] | SAITO K, SOHN K, ZHANG Xiang, et al. Prefix conditioning unifies language and label supervision[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 2861-2870. |
[70] | CHEN Keyan, LIU Chenyang, CHEN Hao, et al. RSPrompter: learning to prompt for remote sensing instance segmentation based on visual foundation model[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2306.16269v2. |
[71] | WEI J, WANG Xuezhi, SCHUURMANS D, et al. Chain-of-thought prompting elicits reasoning in large language models[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2201.11903v6. |
[72] | OUYANG L, WU J, JIANG X, et al. Training language models to follow instructions with human feedback[J]. Advances in Neural Information Processing Systems, 2022, 35:27730-27744. |
[73] | GAN Zhe, LI Linjie, LI Chunyuan, et al. Vision-language pre-training: basics, recent advances, and future trends[J]. Foundations and Trends® in Computer Graphics and Vision, 2022, 14(3/4):163-352. |
[74] | SHEN Qiuhong, YANG Xingyi, WANG Xinchao. Anything-3D: towards single-view anything reconstruction in the wild[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2304.10261v1. |
[75] | YANG X, ZHOU D, LIU S, et al. Deep model reassembly[J]. Advances in Neural Information Processing Systems, 2022, 35:25739-25753. |
[76] | XI Zhiheng, CHEN Wenxiang, GUO Xin, et al. The rise and potential of large language model based agents: a survey[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2309.07864v3. |
[77] | CONG Y, KHANNA S, MENG C, et al. Satmae: pre-training transformers for temporal and multi-spectral satellite imagery[J]. Advances in Neural Information Processing Systems, 2022, 35:197-211. |
[78] | WANG Di, ZHANG Qiming, XU Yufei, et al. Advancing plain vision transformer toward remote sensing foundation model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5607315. |
[79] | LIU Fan, CHEN Delong, GUAN Z, et al. RemoteCLIP: a vision language foundation model for remote sensing[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2306.11029v4. |
[80] | ZHANG Zilun, ZHAO Tiancheng, GUO Yulong, et al. RS5M: a large scale vision-language dataset for remote sensing vision-language foundation model[EB/OL]. [2024-02-15]. http://export.arxiv.org/abs/2306.11300v4. |
[81] | WANG Di, ZHANG Jing, DU Bo, et al. SAMRS: scaling-up remote sensing segmentation dataset with segment anything model[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2305.02034. |
[1] | Yan SHI, Da WANG, Min DENG, Xuexi YANG. Spatio-temporal anomaly detection: connotation transformation and implementation path from data-driven to knowledge-driven modeling [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1493-1504. |
[2] | Xin YAN, Li SHEN, Junjie PAN, Yanshuai DAI, Jicheng WANG, Xiaoli ZHENG, Zhi-lin LI. Weakly supervised building change detection integrating multi-scale feature fusion and spatial refinement for high resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1586-1597. |
[3] | Jinwei BU, Kegen YU, Qiulan WANG, Linghui LI, Xinyu LIU, Xiaoqing ZUO, Jun CHANG. Deep learning retrieval method for global ocean significant wave height by integrating spaceborne GNSS-R data and multivariable parameters [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1321-1335. |
[4] | Liming JIANG, Yi SHAO, Zhiwei ZHOU, Peifeng MA, Teng WANG. A review of intelligent InSAR data processing: recent advancements, challenges and prospects [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1037-1056. |
[5] | Chi GUO, Yang LIU, Yarong LUO, Jingnan LIU, Quan ZHANG. Research progress in the application of image semantic information in visual SLAM [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1057-1076. |
[6] | Xunqiang GONG, Hongyu WANG, Tieding LU, Wei YOU. A general progressive decomposition long-term prediction network model for high-speed railway bridge pier settlement [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1113-1127. |
[7] | Haiyan GU, Yi YANG, Haitao LI, Lijian SUN, Shaopeng DING, Shiqi LIU. Dynamic construction of high-resolution remote sensing image sample datasets and intelligent interpretation applications [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1165-1179. |
[8] | Shaopeng DING, Xiushan LU, Rufei LIU, Yi YANG, Haiyan GU, Haitao LI. Building change detection method combining object feature guidance and multiple attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1224-1235. |
[9] | Huimin LIU, Chenwei ZHANG, Kaiqi CHEN, Min DENG, Chong PENG. Deep learning-based spatio-temporal prediction and uncertainty assessment of urban PM2.5 distribution [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 750-760. |
[10] | CAO Fanzhi, SHI Tianxin, HAN Kaiyang, WANG Pu, AN Wei. Log-Gabor filter-based high-precision multi-modal remote sensing image matching [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 526-536. |
[11] | SUN Chuanmeng, WEI Yu, LI Xinyu, MA Tiehua, WU Zhibo. Intelligent detection method of image water level inversion for water level without water scale in complex scenes [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 558-568. |
[12] | LIAO Zhaohong, ZHANG Yichen, YANG Biao, LIN Mingchun, SUN Wenbo, GAO Zhi. Monocular height estimation method of remote sensing image based on Swin Transformer-CNN and its application in highway road construction sites [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 344-352. |
[13] | LIN Yunhao, WANG Yanjun, LI Shaochun, CAI Hengfan. A coupled DeepLab and Transformer approach for fine classification of crop cultivation types in remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 353-366. |
[14] | JIANG Baode, HANG Wei, XU Shaofen, WU Yong. Multi-scale building instance refinement extraction from remote sensing images by fusing with decentralized adaptive attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1504-1514. |
[15] | CAO Xingwen, ZHENG Hongwei, LIU Ying, WU Mengquan, WANG Lingyue, BAO Anming, CHEN Xi. Multi-pedestrian trajectory prediction method based on multi-view 3D simulation video learning [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1595-1608. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||