Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (4): 599-611.doi: 10.11947/j.AGCS.2022.20220116
• The 90th Anniversary of Tongji University Surveying and Mapping Discipline • Previous Articles Next Articles
QIAO Gang1,2, HAO Tong1,2, LI Hongwei1,2, LU Ping1,2, AN Lu1,2, CHEN Qiujie1,2, LI Rongxing1,2
Received:
2022-02-23
Revised:
2022-03-18
Published:
2022-04-24
Supported by:
CLC Number:
QIAO Gang, HAO Tong, LI Hongwei, LU Ping, AN Lu, CHEN Qiujie, LI Rongxing. Remote sensing and observation validation of key parameters of the polar ice sheet in the context of global climate change[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 599-611.
[1] 联合国. 联合国可持续发展目标[EB/OL].[2022-02-28]. https://www.unescap.org/sites/default/files/SDG%20Goals%20Booklet_Chinese.pdf. United Nations. The sustainable development goals report[EB/OL].[2022-02-28]. https://www.unescap.org/sites/default/files/SDG%20Goals%20Booklet_Chinese.pdf. [2] 联合国. 联合国可持续发展目标报告[EB/OL].[2022-02-28]. https://unstats.un.org/sdgs/report/2020/The-Sustainable-Development-Goals-Report-2020_Chinese.pdf. United Nations. The sustainable development goals report[EB/OL].[2022-02-28]. https://unstats.un.org/sdgs/report/2020/The-Sustainable-Development-Goals-Report-2020_Chinese.pdf. [3] SCAR. Antarctic climate change and the environment: a progress report[EB/OL].[2022-02-28]. https://www.scar.org/scar-library/search/policy/Antarctic-treaty/atcm-xxxi-and-cep-xi-2008/2895-atcm31-ip062/. [4] SCAR. SCAR report 2019/2020 “climate change and CCAMLR” to CCAMLR[EB/OL].[2022-02-28]. https://www.scar.org/scar-library/search/policy/commission-for-the-conservation-of-antarctic-marine-living-resources-ccamlr/scar-annual-reports-to-ccamlr/5582-scar-report-2019-2020-climate-change-and-ccamlr-to-ccamlr/. [5] IPCC. Climate change 2021: the physical science basis. contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[EB/OL].[2022-02-28]. https://www.ipcc.ch/assessment-report/ar6/. [6] LI Xin, CHE Tao, LI Xinwu, et al. CASEarth poles: big data for the three poles[J]. Bulletin of the American Meteorological Society, 2020, 101(9): E1475-E1491. [7] 车涛, 李新, 李新武, 等. 冰冻圈遥感:助力“三极”大科学计划[J]. 中国科学院院刊, 2020, 35(4): 484-493. CHE Tao, LI Xin, LI Xinwu, et al. Developing cryospheric remote sensing, promoting scientific programme of earth's three poles[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(4): 484-493. [8] SMITH B, FRICKER H A, GARDNER A S, et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes[J]. Science, 2020, 368(6496): 1239-1242. [9] 李荣兴, 张寅生, 汪汉胜, 等. 冰冻圈和极地环境变化关键参数观测与反演[J]. 中国基础科学, 2017, 19(5): 1-5,11. LI Rongxing, ZHANG Yinsheng, WANG Hansheng, et al. Observation and inversion of key parameters of cryospheric and polar environment changes[J]. China Basic Science, 2017, 19(5): 1-5,11. [10] 秦大河, 任贾文, 康世昌. 中国南极冰川学研究 10 年回顾与展望[J]. 冰川冻土, 1998(3):35-40. QIN Dahe, REN Jiawen, KANG Shichang. Retrospect and prospect on the study of Antarctic glaciology in China in the last 10 years[J]. Journal of Glaciology and Geocryology, 1998(3):35-40. [11] WALKER C C, BECKER M K, FRICKER H A. A high resolution, three-dimensional view of the D-28 calving event from amery ice shelf with ICESat-2 and satellite imagery[J]. Geophysical Research Letters, 2021, 48(3): e2020GL091200. [12] QIAO Gang, LI Yanjun, GUO Song, et al. Evolving instability of the scar inlet ice shelf based on sequential landsat images spanning 2005—2018[J]. Remote Sensing, 2019, 12(1): 36. [13] CHENG Yuan, XIA Menglian, QIAO Gang, et al. Imminent calving accelerated by increased instability of the Brunt Ice Shelf, in response to climate warming[J]. Earth and Planetary Science Letters, 2021, 572: 117132. [14] CHENG Yuan, XIA Menglian, QIAO Gang, et al. Calving cycle of Ninnis glacier over the last 60 years[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 105: 102612. [15] 郝彤, 王晓峰, 冯甜甜, 等. 地球系统多尺度关键区域与关键过程的智能化测绘[J]. 测绘学报, 2021, 50(8): 1084-1095. DOI: 10.11947/j.AGCS.2021.20210109. HAO Tong, WANG Xiaofeng, FENG Tiantian, et al. Intelligent and multi-scale surveying of key areas and processes of the Earth system[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1084-1095. DOI: 10.11947/j.AGCS.2021.20210109. [16] YANG Yuande, KE Hao, WANG Zemin, et al. Decadal GPS-derived ice surface velocity along the transect from Zhongshan station to and around Dome Argus, East Antarctica, 2005-16[J]. Annals of Glaciology, 2018, 59(76pt1): 1-9. [17] RIGNOT E, MOUGINOT J, SCHEUCHL B. Ice flow of the Antarctic ice sheet[J]. Science, 2011, 333(6048): 1427-1430. [18] BARTHOLOMEW I, NIENOW P, SOLE A, et al. Short-term variability in Greenland ice sheet motion forced by time-varying meltwater drainage: implications for the relationship between subglacial drainage system behavior and ice velocity[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F3): F03002. [19] VAN WESSEM J M, REIJMER C H, MORLIGHEM M, et al. Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model[J]. Journal of Glaciology, 2014, 60(222): 761-770. [20] LIU Yan, MOORE J C, CHENG Xiao, et al. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves[J]. Proceedings of the National Academy of Sciences, 2015, 112(11): 3263-3268. [21] GAGLIARDINI Olivier. The health of Antarctic ice shelves[J]. Nature Climate Change, 2018, 8(1): 15-16. [22] EDWARDS T L, BRANDON M A, DURAND G, et al. Revisiting Antarctic ice loss due to marine ice-cliff instability[J]. Nature, 2019, 566(7742): 58-64. [23] CHAMPOLLION N, PICARD G, ARNAUD L, et al. Marked decrease in the near-surface snow density retrieved by AMSR-E satellite at Dome C, Antarctica, between 2002 and 2011[J]. The Cryosphere, 2019, 13(4): 1215-1232. [24] ZHANG Shuangcheng, ZHOU Meiling, WANG Yajie, et al. Ground-based GPS used in the snow depth survey of Greenland [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(2): 47-55.DOI: 10.11947/j.JGGS.2021.0205. [25] XIE Huan, LI Rongxing, TONG Xiaohua, et al. A comparative study of changes in the Lambert Glacier/Amery ice shelf system, east Antarctica, during 2004—2008 using gravity and surface elevation observations[J]. Journal of Glaciology, 2016, 62(235): 888-904. [26] 陈雷. 基于卫星测高数据的南极典型区域冰盖质量变化研究[D]. 上海: 同济大学, 2017. CHEN Lei. Mass balance of Antarctic ice sheet in typical areas based on altimetric data [D]. Shanghai: Tongji University, 2017. [27] 杨树瑚, 顾祈明, 张云, 等. 利用冰雷达诊断南极冰盖底部环境的研究综述[J]. 极地研究, 2016, 28(2): 277-286. YANG Shuhu, GU Qiming, ZHANG Yun, et al. A review of the use of ice penetrating radar to diagnose the subglacial environments[J]. Chinese Journal of Polar Research, 2016, 28(2): 277-286. [28] MORLIGHEM M, RIGNOT E, SEROUSSI H, et al. A mass conservation approach for mapping glacier ice thickness[J]. Geophysical Research Letters, 2011, 38(19): L19503. [29] 陈军, 柯长青. 南极冰盖表面冰流速研究综述[J]. 极地研究, 2015, 27(1): 115-124. CHEN Jun, KE Changqing. Research progress on ice velocity of Antarctic ice sheet[J]. Chinese Journal of Polar Research, 2015, 27(1): 115-124. [30] 季青原, 王帮兵, 孙波. PISM冰盖模式对Amery冰架流速场模拟的适用性[J]. 极地研究, 2015, 27(3): 229-236. JI Qingyuan, WANG Bangbing, SUN Bo. Applicability pism for velocity analysis of the Amery ice shelf,east Antarctica[J]. Chinese Journal of Polar Research, 2015, 27(3): 229-236. [31] SHEN Qiang, WANG Hansheng, SHUM C K, et al. Recent high-resolution Antarctic ice velocity maps reveal increased mass loss in Wilkes Land, East Antarctica[J]. Scientific reports, 2018, 8(1): 1-8. [32] LI Rongxing, YE Wenkai, QIAO Gang, et al. A new analytical method for estimating Antarctic ice flow in the 1960s from historical optical satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2771-2785. [33] YE Wenkai, QIAO Gang, KONG Fansi, et al. Improved geometric modeling of 1960s KH-5 ARGON satellite images for regional Antarctica applications[J]. Photogrammetric Engineering & Remote Sensing, 2017, 83(7): 477-491. [34] LUO S, CHENG Y, LI Z, et al. Ice flow velocity mapping in east Antarctica using historical images from 1960s to 1980s: recent progress[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2021, 43: 491-496. [35] 陈嘉晋. 粒雪层密实化模型及改正对南极质量平衡估算影响研究[D]. 上海: 同济大学, 2020. CHEN Jiajin. The research of the Antarctic mass change evaluation caused by FIRN compaction modelling correction[D]. Shanghai: Tongji University, 2020. [36] TONBOE R T, DYBKLER G, HOYER J L. Simulations of the snow covered sea ice surface temperature and microwave effective temperature[J]. Tellus A: Dynamic Meteorology and Oceanography, 2011, 63(5): 1028-1037. [37] 国家海洋局.“中国的南极事业”白皮书[R]. 北京:国家海洋局,2017. State Oceanic Administration, People's Republic of China. White Paper on China's Antarctic Programs [R]. Beijing:State Oceanic Administration, People's Republic of China,2017. [38] MARKUS T, NEUMANN T, MARTINO A, et al. The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation[J]. Remote sensing of environment, 2017, 190: 260-273. [39] NEUMANN T A, MARTINO A J, MARKUS T, et al. The ice, cloud, and land elevation satellite-2 mission: a global geolocated photon product derived from the advanced topographic laser altimeter system[J]. Remote Sensing of Environment, 2019, 233: 111325. [40] BRUNT K M, NEUMANN T A, SMITH B E. Assessment of ICESat-2 ice sheet surface heights, based on comparisons over the interior of the Antarctic ice sheet[J]. Geophysical Research Letters, 2019, 46(22): 13072-13078. [41] NEUMANN T, BRUNT K, MARGUDER L, et al. Validation activities for the ice, cloud, and land elevation satellite-2 (ICESat-2) mission[C]//Proceedings of 2020 EGU General Assembly Conference Abstracts. Vienna, Austria: Copernicus GmbH, 2020: 20671. [42] LI Rongxing, LI Hongwei, HAO Tong, et al. Assessment of ICESat-2 ice surface elevations over the Chinese Antarctic research expedition (CHINARE) route, east Antarctica, based on coordinated multi-sensor observations[J]. The Cryosphere, 2021, 15(7): 3083-3099. [43] LI Jun, ZWALLY H J. Response times of ice-sheet surface heights to changes in the rate of Antarctic firn compaction caused by accumulation and temperature variations[J]. Journal of Glaciology, 2015, 61(230): 1037-1047. [44] HUI Fengming, ZHAO Tiancheng, LI Xinqing, et al. Satellite-based sea ice navigation for Prydz Bay, east Antarctica[J]. Remote Sensing, 2017, 9(6): 518. [45] LI Xinqing, OUYANG Lunxi, HUI Fengming, et al. An improved automated method to detect landfast ice edge off Zhongshan station using SAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(12): 4737-4746. [46] 孙波, 唐学远, 肖恩照, 等. 南极机场冰雪跑道工程技术发展现状与展望[J]. 中国工程科学, 2021, 23(2): 161-168. SUN Bo, TANG Xueyuan, XIAO Enzhao, et al. Ice and snow runway engineering in the Antarctica: current status and prospect[J]. Strategic Study of CAE, 2021, 23(2): 161-168. [47] CUI Xiangbin, LIU Jiaxin, TIAN Yixiang, et al. GIS-supported airfield selection near Zhongshan station, east Antarctica, based on multi-mission remote sensing data[J]. Marine Geodesy, 2019, 42(5): 422-446. [48] TAPLEY B D, BETTADPUR S, RIES J C, et al. GRACE measurements of mass variability in the Earth system[J]. Science, 2004, 305(5683): 503-505. [49] CHEN Qiujie, SHEN Yunzhong, KUSCHE J, et al. High-resolution GRACE monthly spherical harmonic solutions[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(1): e2019JB018892. |
[1] | ZHANG Zuxun, JIANG Huiwei, PANG Shiyan, HU Xiangyun. Review and prospect in change detection of multi-temporal remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1091-1107. |
[2] | WANG Qiao. Research framework of remote sensing monitoring and real-time diagnosis of earth surface anomalies [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1141-1152. |
[3] | ZHANG Kefei, LI Haobo, WANG Xiaoming, ZHU Dantong, HE Qimin, LI Longjiang, HU Andong, ZHENG Nanshan, LI Huaizhan. Recent progresses and future prospectives of ground-based GNSS water vapor sounding [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1172-1191. |
[4] | ZHANG Liangpei, HE Jiang, YANG Qianqian, XIAO Yi, YUAN Qiangqiang. Data-driven multi-source remote sensing data fusion: progress and challenges [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1317-1337. |
[5] | WU Lixin, QI Yuan, MAO Wenfei, LIU Shanjun, DING Yifan, JING Feng, SHEN Xuhui. Progresses and possible frontiers in the study on seismic applications of multi-frequency and multi-polarization passive microwave remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1356-1371. |
[6] | XU Qiang, ZHU Xing, LI Weile, DONG Xiujun, DAI Keren, JIANG Yanan, LU Huiyan, GUO Chen. Technical progress of space-air-ground collaborative monitoring of landslide [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. |
[7] | LI Deren, WANG Mi, YANG Fang. A new generation of intelligent mapping and remote sensing scientific test satellite Luojia-3 01 [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 789-796. |
[8] | GONG Jianya, HUAN Linxi, ZHENG Xianwei. Deep learning interpretability analysis methods in image interpretation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 873-884. |
[9] | ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885-896. |
[10] | LI Rongxing, LI Guojun, FENG Tiantian, SHEN Qiang, QIAO Gang, YE Zhen, XIA Menglian. A review of Antarctic ice velocity products and methods based on optical remote sensing satellite images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 953-963. |
[11] | CHENG Jiehai, HUANG Zhongyi, WANG Jianru, HE Shi. The automatic determination method of the optimal segmentation result of high-spatial resolution remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 658-667. |
[12] | BAI Kun, MU Xiaodong, CHEN Xuebing, ZHU Yongqing, YOU Xuanang. Unsupervised remote sensing image scene classification based on semi-supervised learning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 691-702. |
[13] | GONG Jianya, ZHANG Mi, HU Xiangyun, ZHANG Zhan, LI Yansheng, Jiang Liangcun. The design of deep learning framework and model for intelligent remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 475-487. |
[14] | TONG Xiaohua, LIU Shijie, XIE Huan, XU Xiong, YE Zhen, FENG Yongjiu, WANG Chao, LIU Sicong, JIN Yanmin, CHEN Peng, HONG Zhonghua, LUAN Kuifeng. From Earth mapping to extraterrestrial planet mapping [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 488-500. |
[15] | WANG Quan, YOU Shucheng. Research and application outlook of land satellite remote sensing monitoring system [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 534-543. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||