Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (4): 599-611.doi: 10.11947/j.AGCS.2022.20220116
• The 90th Anniversary of Tongji University Surveying and Mapping Discipline • Previous Articles Next Articles
QIAO Gang1,2, HAO Tong1,2, LI Hongwei1,2, LU Ping1,2, AN Lu1,2, CHEN Qiujie1,2, LI Rongxing1,2
Received:2022-02-23
Revised:2022-03-18
Published:2022-04-24
Supported by:CLC Number:
QIAO Gang, HAO Tong, LI Hongwei, LU Ping, AN Lu, CHEN Qiujie, LI Rongxing. Remote sensing and observation validation of key parameters of the polar ice sheet in the context of global climate change[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 599-611.
| [1] 联合国. 联合国可持续发展目标[EB/OL].[2022-02-28]. https://www.unescap.org/sites/default/files/SDG%20Goals%20Booklet_Chinese.pdf. United Nations. The sustainable development goals report[EB/OL].[2022-02-28]. https://www.unescap.org/sites/default/files/SDG%20Goals%20Booklet_Chinese.pdf. [2] 联合国. 联合国可持续发展目标报告[EB/OL].[2022-02-28]. https://unstats.un.org/sdgs/report/2020/The-Sustainable-Development-Goals-Report-2020_Chinese.pdf. United Nations. The sustainable development goals report[EB/OL].[2022-02-28]. https://unstats.un.org/sdgs/report/2020/The-Sustainable-Development-Goals-Report-2020_Chinese.pdf. [3] SCAR. Antarctic climate change and the environment: a progress report[EB/OL].[2022-02-28]. https://www.scar.org/scar-library/search/policy/Antarctic-treaty/atcm-xxxi-and-cep-xi-2008/2895-atcm31-ip062/. [4] SCAR. SCAR report 2019/2020 “climate change and CCAMLR” to CCAMLR[EB/OL].[2022-02-28]. https://www.scar.org/scar-library/search/policy/commission-for-the-conservation-of-antarctic-marine-living-resources-ccamlr/scar-annual-reports-to-ccamlr/5582-scar-report-2019-2020-climate-change-and-ccamlr-to-ccamlr/. [5] IPCC. Climate change 2021: the physical science basis. contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[EB/OL].[2022-02-28]. https://www.ipcc.ch/assessment-report/ar6/. [6] LI Xin, CHE Tao, LI Xinwu, et al. CASEarth poles: big data for the three poles[J]. Bulletin of the American Meteorological Society, 2020, 101(9): E1475-E1491. [7] 车涛, 李新, 李新武, 等. 冰冻圈遥感:助力“三极”大科学计划[J]. 中国科学院院刊, 2020, 35(4): 484-493. CHE Tao, LI Xin, LI Xinwu, et al. Developing cryospheric remote sensing, promoting scientific programme of earth's three poles[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(4): 484-493. [8] SMITH B, FRICKER H A, GARDNER A S, et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes[J]. Science, 2020, 368(6496): 1239-1242. [9] 李荣兴, 张寅生, 汪汉胜, 等. 冰冻圈和极地环境变化关键参数观测与反演[J]. 中国基础科学, 2017, 19(5): 1-5,11. LI Rongxing, ZHANG Yinsheng, WANG Hansheng, et al. Observation and inversion of key parameters of cryospheric and polar environment changes[J]. China Basic Science, 2017, 19(5): 1-5,11. [10] 秦大河, 任贾文, 康世昌. 中国南极冰川学研究 10 年回顾与展望[J]. 冰川冻土, 1998(3):35-40. QIN Dahe, REN Jiawen, KANG Shichang. Retrospect and prospect on the study of Antarctic glaciology in China in the last 10 years[J]. Journal of Glaciology and Geocryology, 1998(3):35-40. [11] WALKER C C, BECKER M K, FRICKER H A. A high resolution, three-dimensional view of the D-28 calving event from amery ice shelf with ICESat-2 and satellite imagery[J]. Geophysical Research Letters, 2021, 48(3): e2020GL091200. [12] QIAO Gang, LI Yanjun, GUO Song, et al. Evolving instability of the scar inlet ice shelf based on sequential landsat images spanning 2005—2018[J]. Remote Sensing, 2019, 12(1): 36. [13] CHENG Yuan, XIA Menglian, QIAO Gang, et al. Imminent calving accelerated by increased instability of the Brunt Ice Shelf, in response to climate warming[J]. Earth and Planetary Science Letters, 2021, 572: 117132. [14] CHENG Yuan, XIA Menglian, QIAO Gang, et al. Calving cycle of Ninnis glacier over the last 60 years[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 105: 102612. [15] 郝彤, 王晓峰, 冯甜甜, 等. 地球系统多尺度关键区域与关键过程的智能化测绘[J]. 测绘学报, 2021, 50(8): 1084-1095. DOI: 10.11947/j.AGCS.2021.20210109. HAO Tong, WANG Xiaofeng, FENG Tiantian, et al. Intelligent and multi-scale surveying of key areas and processes of the Earth system[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1084-1095. DOI: 10.11947/j.AGCS.2021.20210109. [16] YANG Yuande, KE Hao, WANG Zemin, et al. Decadal GPS-derived ice surface velocity along the transect from Zhongshan station to and around Dome Argus, East Antarctica, 2005-16[J]. Annals of Glaciology, 2018, 59(76pt1): 1-9. [17] RIGNOT E, MOUGINOT J, SCHEUCHL B. Ice flow of the Antarctic ice sheet[J]. Science, 2011, 333(6048): 1427-1430. [18] BARTHOLOMEW I, NIENOW P, SOLE A, et al. Short-term variability in Greenland ice sheet motion forced by time-varying meltwater drainage: implications for the relationship between subglacial drainage system behavior and ice velocity[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F3): F03002. [19] VAN WESSEM J M, REIJMER C H, MORLIGHEM M, et al. Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model[J]. Journal of Glaciology, 2014, 60(222): 761-770. [20] LIU Yan, MOORE J C, CHENG Xiao, et al. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves[J]. Proceedings of the National Academy of Sciences, 2015, 112(11): 3263-3268. [21] GAGLIARDINI Olivier. The health of Antarctic ice shelves[J]. Nature Climate Change, 2018, 8(1): 15-16. [22] EDWARDS T L, BRANDON M A, DURAND G, et al. Revisiting Antarctic ice loss due to marine ice-cliff instability[J]. Nature, 2019, 566(7742): 58-64. [23] CHAMPOLLION N, PICARD G, ARNAUD L, et al. Marked decrease in the near-surface snow density retrieved by AMSR-E satellite at Dome C, Antarctica, between 2002 and 2011[J]. The Cryosphere, 2019, 13(4): 1215-1232. [24] ZHANG Shuangcheng, ZHOU Meiling, WANG Yajie, et al. Ground-based GPS used in the snow depth survey of Greenland [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(2): 47-55.DOI: 10.11947/j.JGGS.2021.0205. [25] XIE Huan, LI Rongxing, TONG Xiaohua, et al. A comparative study of changes in the Lambert Glacier/Amery ice shelf system, east Antarctica, during 2004—2008 using gravity and surface elevation observations[J]. Journal of Glaciology, 2016, 62(235): 888-904. [26] 陈雷. 基于卫星测高数据的南极典型区域冰盖质量变化研究[D]. 上海: 同济大学, 2017. CHEN Lei. Mass balance of Antarctic ice sheet in typical areas based on altimetric data [D]. Shanghai: Tongji University, 2017. [27] 杨树瑚, 顾祈明, 张云, 等. 利用冰雷达诊断南极冰盖底部环境的研究综述[J]. 极地研究, 2016, 28(2): 277-286. YANG Shuhu, GU Qiming, ZHANG Yun, et al. A review of the use of ice penetrating radar to diagnose the subglacial environments[J]. Chinese Journal of Polar Research, 2016, 28(2): 277-286. [28] MORLIGHEM M, RIGNOT E, SEROUSSI H, et al. A mass conservation approach for mapping glacier ice thickness[J]. Geophysical Research Letters, 2011, 38(19): L19503. [29] 陈军, 柯长青. 南极冰盖表面冰流速研究综述[J]. 极地研究, 2015, 27(1): 115-124. CHEN Jun, KE Changqing. Research progress on ice velocity of Antarctic ice sheet[J]. Chinese Journal of Polar Research, 2015, 27(1): 115-124. [30] 季青原, 王帮兵, 孙波. PISM冰盖模式对Amery冰架流速场模拟的适用性[J]. 极地研究, 2015, 27(3): 229-236. JI Qingyuan, WANG Bangbing, SUN Bo. Applicability pism for velocity analysis of the Amery ice shelf,east Antarctica[J]. Chinese Journal of Polar Research, 2015, 27(3): 229-236. [31] SHEN Qiang, WANG Hansheng, SHUM C K, et al. Recent high-resolution Antarctic ice velocity maps reveal increased mass loss in Wilkes Land, East Antarctica[J]. Scientific reports, 2018, 8(1): 1-8. [32] LI Rongxing, YE Wenkai, QIAO Gang, et al. A new analytical method for estimating Antarctic ice flow in the 1960s from historical optical satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2771-2785. [33] YE Wenkai, QIAO Gang, KONG Fansi, et al. Improved geometric modeling of 1960s KH-5 ARGON satellite images for regional Antarctica applications[J]. Photogrammetric Engineering & Remote Sensing, 2017, 83(7): 477-491. [34] LUO S, CHENG Y, LI Z, et al. Ice flow velocity mapping in east Antarctica using historical images from 1960s to 1980s: recent progress[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2021, 43: 491-496. [35] 陈嘉晋. 粒雪层密实化模型及改正对南极质量平衡估算影响研究[D]. 上海: 同济大学, 2020. CHEN Jiajin. The research of the Antarctic mass change evaluation caused by FIRN compaction modelling correction[D]. Shanghai: Tongji University, 2020. [36] TONBOE R T, DYBKLER G, HOYER J L. Simulations of the snow covered sea ice surface temperature and microwave effective temperature[J]. Tellus A: Dynamic Meteorology and Oceanography, 2011, 63(5): 1028-1037. [37] 国家海洋局.“中国的南极事业”白皮书[R]. 北京:国家海洋局,2017. State Oceanic Administration, People's Republic of China. White Paper on China's Antarctic Programs [R]. Beijing:State Oceanic Administration, People's Republic of China,2017. [38] MARKUS T, NEUMANN T, MARTINO A, et al. The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation[J]. Remote sensing of environment, 2017, 190: 260-273. [39] NEUMANN T A, MARTINO A J, MARKUS T, et al. The ice, cloud, and land elevation satellite-2 mission: a global geolocated photon product derived from the advanced topographic laser altimeter system[J]. Remote Sensing of Environment, 2019, 233: 111325. [40] BRUNT K M, NEUMANN T A, SMITH B E. Assessment of ICESat-2 ice sheet surface heights, based on comparisons over the interior of the Antarctic ice sheet[J]. Geophysical Research Letters, 2019, 46(22): 13072-13078. [41] NEUMANN T, BRUNT K, MARGUDER L, et al. Validation activities for the ice, cloud, and land elevation satellite-2 (ICESat-2) mission[C]//Proceedings of 2020 EGU General Assembly Conference Abstracts. Vienna, Austria: Copernicus GmbH, 2020: 20671. [42] LI Rongxing, LI Hongwei, HAO Tong, et al. Assessment of ICESat-2 ice surface elevations over the Chinese Antarctic research expedition (CHINARE) route, east Antarctica, based on coordinated multi-sensor observations[J]. The Cryosphere, 2021, 15(7): 3083-3099. [43] LI Jun, ZWALLY H J. Response times of ice-sheet surface heights to changes in the rate of Antarctic firn compaction caused by accumulation and temperature variations[J]. Journal of Glaciology, 2015, 61(230): 1037-1047. [44] HUI Fengming, ZHAO Tiancheng, LI Xinqing, et al. Satellite-based sea ice navigation for Prydz Bay, east Antarctica[J]. Remote Sensing, 2017, 9(6): 518. [45] LI Xinqing, OUYANG Lunxi, HUI Fengming, et al. An improved automated method to detect landfast ice edge off Zhongshan station using SAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(12): 4737-4746. [46] 孙波, 唐学远, 肖恩照, 等. 南极机场冰雪跑道工程技术发展现状与展望[J]. 中国工程科学, 2021, 23(2): 161-168. SUN Bo, TANG Xueyuan, XIAO Enzhao, et al. Ice and snow runway engineering in the Antarctica: current status and prospect[J]. Strategic Study of CAE, 2021, 23(2): 161-168. [47] CUI Xiangbin, LIU Jiaxin, TIAN Yixiang, et al. GIS-supported airfield selection near Zhongshan station, east Antarctica, based on multi-mission remote sensing data[J]. Marine Geodesy, 2019, 42(5): 422-446. [48] TAPLEY B D, BETTADPUR S, RIES J C, et al. GRACE measurements of mass variability in the Earth system[J]. Science, 2004, 305(5683): 503-505. [49] CHEN Qiujie, SHEN Yunzhong, KUSCHE J, et al. High-resolution GRACE monthly spherical harmonic solutions[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(1): e2019JB018892. |
| [1] | Shunping JI, Jin LIU, Jian GAO, Jianya GONG. An intelligent 3D reconstruction framework via deep learning based multi-view image matching [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1633-1646. |
| [2] | Kai YAN, Jianming XU, Qiao WANG. Earth surface anomaly detection based on lightweight large vision model features in remotely sensed imagery [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1664-1676. |
| [3] | Tianjun WU, Manjia LI, Jiancheng LUO, Ziqi LI, Xiaodong HU, Lijing GAO, Zhanfeng SHEN. Farmland-parcel-based crop remote sensing classification method in complex mountainous areas via coupling spatial distribution patterns [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1215-1229. |
| [4] | Yakun XIE, Yaoji ZHAO, Jiaxing TU, Ruifeng XIA, Dejun FENG, Suning LIU, Hongyu CHEN, Jun ZHU. Edge and global features integrated network for salient object detection in optical remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1265-1279. |
| [5] | Zibo DONG, Jingxue WANG, Lijing BU, Lin FANG, Zhenghui XU. MAFNet: building extraction method from remote sensing images based on multi-scale atrous fusion network [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1094-1106. |
| [6] | Haifeng LI, Wang GUO, Mengwei WU, Chengli PENG, Qing ZHU, Yu LIU, Chao TAO. Visual-language joint representation and intelligent interpretation of remote sensing geo-objects: principles, challenges and opportunities [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 853-872. |
| [7] | Chao WANG, Tianyu CHEN, Tong ZHANG, Tanvir AHMED, Liqiang JI, Tao XIE, Jiajun YANG, Shuai WANG. Multi-sensor optical remote sensing images change detection based on global differential enhancement module and balance penalty loss [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 873-887. |
| [8] | Yiming ZHAO, Kelin HU, Kelong TU, Yaxian QING, Chao YANG, Kunlun QI, Huayi WU. Multi-label scene classification method based on fusion of SAR and optical remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 911-923. |
| [9] | Xinchang ZHANG, Ji QI, Chao TAO, Siyang FU, Mingning GUO, Yongjian RUAN. A survey on cloud removal in optical remote sensing images: progress, challenges, and future works [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(4): 603-620. |
| [10] | Zhaoyang HOU, Haowen YAN, Liming ZHANG, Rongjuan MA, Ruitao QU. Zero-watermark copyright protection method for remote sensing images based on coupled neural P system and blockchain [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2247-2261. |
| [11] | Hao WU, Dongyang HOU, Jun ZHANG, Ping ZHANG, Yuxuan LIU, Lei DU, Lu KANG, Tao CHENG, Jun CHEN. Research on key technologies of remote sensing based natural resources monitoring and supervision platform supported by dynamic service computing [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 1992-2008. |
| [12] | Xi GONG, Zhanlong CHEN, Hengqiang ZHENG, Sheng HU, Hongyan ZHANG. Remote sensing image scene classification method integrating spatial and semantic information of transferred features [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 2009-2025. |
| [13] | Zhili ZHANG, Huiwei JIANG, Xiangyun HU. A minimal-interaction framework for accurate and batch extraction of geospatial objects from remote sensing imagery [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(10): 1863-1876. |
| [14] | Jichao LÜ, Rui ZHANG, Xu HE, Ruikai HONG, Age SHAMA, Guoxiang LIU. Multi-branch network assessment and dynamic change analysis of wide-area landslide susceptibility [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 104-122. |
| [15] | Jiayi TANG, Xiaochong TONG, Chunping QIU, Yaxian LEI, Yi LEI, Haoshuai SONG. Remote sensing scene retrieval method based on scene graph [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 123-135. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||