[1] 杜培军. 高分辨率卫星遥感的发展及其在矿山的应用[J]. 2001, 10(1): 5-7. DU Peijun. Development of high-resolution satellite remote sensing and its application in mines[J]. Coal, 2001, 10(1): 5-7. [2] 曹福成. 高分系列遥感卫星布设中国太空“慧眼”: 我国高分专项建设回眸[J]. 中国军转民, 2015(1): 28-33. CAO Fucheng. Gaofen series remote sensing satellite China’s space “eye”:review of China’s special construction of high marks [J]. Defense Industry Conversion in China, 2015(1): 28-33. [3] 明冬萍, 骆剑承, 沈占锋, 等. 高分辨率遥感影像信息提取与目标识别技术研究[J]. 测绘科学, 2005, 30(3): 18-20, 3. MING Dongping, LUO Jiancheng, SHEN Zhanfeng, et al. Research on information extraction and target recognition from high resolution remote sensing image[J]. Science of Surveying and Mapping, 2005, 30(3): 18-20, 3. [4] 周成虎, 骆剑承. 高分辨率卫星遥感影像地学计算[M]. 北京: 科学出版社, 2009. ZHOU Chenghu, LUO Jiancheng.Geologic calculation of high resolution satellite remote sensing image[M]. Beijing: Science Press, 2009. [5] 张乐飞. 遥感影像的张量表达与流形学习方法研究[D]. 武汉大学, 2013. ZHANG Lefei.Tensor representation and manifold learning methods for remote sensing images[D].Wuhan: Wuhan University, 2013. [6] 赵济. 面向高分辨率遥感影像分类的条件随机场模型研究[D]. 武汉: 武汉大学, 2017. ZHAO Ji. Conditional random fields for high resolution remote sensing image classification[D]. Wuhan: Wuhan University, 2017. [7] 孙显, 付琨, 王宏琦. 高分辨率遥感图像理解[M]. 北京: 科学出版社, 2011. SUN Xian, FU Kun, WANG Hongqi. High resolution remote sensing image understanding[M]. Beijing: Science Press, 2011. [8] 张帆. 面向高分辨率遥感影像分析的深度学习方法研究[D]. 武汉: 武汉大学, 2017. ZHANG Fan. Deep learning for very high resolution remote sensing data analysis[D]. Wuhan: Wuhan University, 2017. [10] 朱祺琪. 面向高分辨率遥感影像场景语义理解的概率主题模型研究[D]. 武汉: 武汉大学, 2018. ZHU Qiqi. Topic model for high resolution remote sensing imagery semantic scene understanding[D]. Wuhan: Wuhan University, 2018. [11] ZHONG Y, WU S, ZHAO B. Scene semantic understanding based on the spatial context relations of multiple objects[J]. Remote Sensing, 2017, 9(10):1030. [12] ZHANG Xiuyuan, DU Shihong, ZHANG Yuan. Semantic and spatial co-occurrence analysis on object pairs for urban scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(8): 2630-2643. [13] ZHU Qiqi, ZHONG Yanfei, ZHANG Liangpei, et al. Scene classification based on the fully sparse semantic topic model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5525-5538. [14] ZHAO Bei, ZHONG Yanfei, XIA Guisong, et al. Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2108-2123. [15] XIA Guisong, HU Jingwen, HU Fan, et al. AID: a benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965-3981. [16] GONG Zhiqiang, ZHONG Ping, YU Yang, et al. Diversity-promoting deep structural metric learning for remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 371-390. [17] ZHANG Wei, TANG Ping, ZHAO Lijun. Remote sensing image scene classification using CNN-CapsNet[J]. Remote Sensing, 2019, 11(5): 494. [18] LIU Qingshan, HANG Renlong, SONG Huihui, et al. Learning multiscale deep features for high-resolution satellite image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 117-126. [19] CHENG Gong, HAN Junwei, LU Xiaoqiang. Remote sensing image scene classification: benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865-1883. [20] NOGUEIRA K, PENATTI O A B, DOS SANTOS J A. Towards better exploiting convolutional neural networks for remote sensing scene classification[J]. Pattern Recognition, 2017, 61: 539-556. [21] ZHAO Lijun, TANG Ping, HUO Lianzhi. A 2-D wavelet decomposition-based bag-of-visual-words model for land-use scene classification[J]. International Journal of Remote Sensing, 2014, 35(6): 2296-2310. [22] CHEN Shizhi, TIAN Yingli. Pyramid of spatial relations for scene-level land use classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 1947-1957. [23] ZHANG Fan, DU Bo, ZHANG Liangpei. Saliency-guided unsupervised feature learning for scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2175-2184. [24] HAN Xiaobing, ZHONG Yanfei, ZHAO Bei, et al. Scene classification based on a hierarchical convolutional sparse auto-encoder for high spatial resolution imagery[J]. International Journal of Remote Sensing, 2017, 38(2): 514-536. [25] ZHONG Yanfei, FEI Feng, LIU Yanfei, et al. SatCNN: satellite image dataset classification using agile convolutional neural networks[J]. Remote Sensing Letters, 2017, 8(2): 136-145. [26] ZHANG Fan, DU Bo, ZHANG Liangpei. Scene classification via a gradient boosting random convolutional network framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1793-1802. [27] WANG Qi, LIU Shaoteng, CHANUSSOT J, et al. Scene classification with recurrent attention of VHR remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1155-1167. [28] CHENG Gong, YANG Ceyuan, YAO Xiwen, et al. When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5): 2811-2821. [29] ZHONG Yanfei, FEI Feng, ZHANG Liangpei. Large patch convolutional neural networks for the scene classification of high spatial resolution imagery[J]. Journal of Applied Remote Sensing, 2016, 10(2):025006. [30] GONG Zhiqiang, ZHONG Ping, HU Weidong, et al. An end-to-end joint unsupervised learning of deep model and pseudo-classes for remote sensing scene representation[C]//Proceedings of 2019 International Joint Conference on Neural Networks (IJCNN). Budapest, Hungary. IEEE, 2019: 1-7. [31] ZHANG Jun, LIU Jiao, PAN Bin, et al. Domain adaptation based on correlation subspace dynamic distribution alignment for remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(11): 7920-7930. [32] SONG Shaoyue, YU Hongkai, MIAO Zhenjiang, et al. Domain adaptation for convolutional neural networks-based remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8): 1324-1328. [33] OTHMAN E, BAZI Y, MELGANI F, et al. Domain adaptation network for cross-scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4441-4456. [34] ZHANG Jun, ZHANG Min, PAN Bin, et al. Semisupervised center loss for remote sensing image scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1362-1373. [35] YAN Peiyao, HE Feng, YANG Yajie, et al. Semi-supervised representation learning for remote sensing image classification based on generative adversarial networks[J]. IEEE Access, 2020, 8: 54135-54144. [36] DAI Xueyuan, WU Xiaofeng, WANG Bin, et al. Semisupervised scene classification for remote sensing images: a method based on convolutional neural networks and ensemble learning[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(6): 869-873. [37] HAN Wei, FENG Ruyi, WANG Lizhe, et al. A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145: 23-43. [38] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. IEEE, 2016: 770-778. [39] YANG Yi, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM Press, 2010: 270-279. |