[1] 李德仁, 童庆禧, 李荣兴, 等. 高分辨率对地观测的若干前沿科学问题[J]. 中国科学(地球科学), 2012, 42(6):805-813. LI Deren, TONG Qingxi, LI Rongxing, et al. Current issues in high-resolution Earth observation technology[J]. Science China Earth Sciences, 2012, 42(6):805-813. [2] YANG Yi, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems.[S.l.]:ACM, 2010:270-279. [3] CHERIYADAT A M. Unsupervised feature learning for aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1):439-451. [4] 张帆. 面向高分辨率遥感影像分析的深度学习方法研究[D]. 武汉:武汉大学, 2017. ZHANG Fan. Deep learning for very high resolution remote sensing data analysis[D]. Wuhan:Wuhan University, 2017. [5] ZHU Qiqi, ZHONG Yanfei, ZHAO Bei, et al. Bag-of-Visual-Words scene classifier with local and global features for high spatial resolution remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6):747-751. [6] 钱晓亮, 李佳, 程塨, 等. 特征提取策略对高分辨率遥感图像场景分类性能影响的评估[J]. 遥感学报, 2018, 22(5):758-776. QIAN Xiaoliang, LI Jia, CHENG Gong, et al. Evaluation of the effect of feature extraction strategy on the performance of high-resolution remote sensing image scene classification[J]. Journal of Remote Sensing, 2018, 22(5):758-776. [7] 闫苗, 赵红东, 李宇海, 等. 基于卷积神经网络的高光谱遥感地物多分类识别[J]. 激光与光电子学进展, 2019, 56(2):021702. YAN Miao, ZHAO Hongdong, LI Yuhai, et al. Multi-classification and recognition of hyperspectral remote sensing objects based on convolutional neural network[J]. Laser & Optoelectronics Progress, 2019, 56(2):021702. [8] 龚希, 吴亮, 谢忠, 等. 融合全局和局部深度特征的高分辨率遥感影像场景分类方法[J]. 光学学报, 2019, 39(3):0301002. GONG Xi, WU Liang, XIE Zhong, et al. Classification method of high-resolution remote sensing scenes based on fusion of global and local deep features[J]. Acta Optica Sinica, 2019, 39(3):0301002. [9] MARMANIS D, DATCU M, ESCH T, et al. Deep learning earth observation classification using ImageNet pretrained networks[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(1):105-109. [10] 庄福振,罗平,何清,等.远移学习研究进展[J].软件学报,2015,26(1):26-39. ZHUANG Fuzhen, LUO Ping, HE Qing, et al. Survey on transter learning research[J]. Journal of Software, 2015, 26(1):26-39. [11] DENG Jia, DONG Wei, SOCHER R, et al. ImageNet:a large-Scale hierarchical image database[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009). Miami, FL:IEEE, 2009. [12] 谭琨, 王雪, 杜培军. 结合深度学习和半监督学习的遥感影像分类进展[J]. 中国图象图形学报, 2019, 24(11):1823-1841. TAN Kun, WANG Xue, DU Peijun. Research progress of the remote sensing classification combining deep learning and semi-supervised learning[J]. Journal of Image and Graphics, 2019, 24(11):1823-1841. [13] PENATTI O A B, NOGUEIRA K, SANTOS J A D. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Boston, MA:IEEE, 2015. [14] BASU S, GANGULY S, MUKHOPADHYAY S, et al. DeepSat:a learning framework for satellite imagery[C]//Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems.[S.l.]:ACM, 2015. [15] 蔡博文, 王树根, 王磊, 等. 基于深度学习模型的城市高分辨率遥感影像不透水面提取[J]. 地球信息科学学报, 2019, 21(9):1420-1429. CAI Bowen, WANG Shugen, WANG Lei, et al. Extraction of urban impervious surface from high-resolution remote sensing imagery based on deep learning[J]. Journal of Geo-information Science, 2019, 21(9):1420-1429. [16] DAI Jifeng, QI Haozhi, XIONG Yuwen, et al. Deformable convolutional networks[C]//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy:IEEE, 2017. [17] ZUO Zongcheng, ZHANG Wen, ZHANG Dongying. A remote sensing image semantic segmentation method by combining deformable convolution with conditional random fields[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3):39-49. DOI:10.11947/j.JGGS.2020.0304. [18] ZHANG Wei, TANG Ping, ZHAO Lijun. Remote sensing image scene classification using CNN-CapsNet[J]. Remote Sensing, 2019, 11(5):494. [19] QI Kunlun, GUAN Qingfeng, YANG Chao, et al. Concentric circle pooling in deep convolutional networks for remote sensing scene classification[J]. Remote Sensing, 2018, 10(6):934. [20] GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1):1-15. DOI:10.11947/j.JGGS.2018.0101. [21] 滕文秀, 温小荣, 王妮, 等. 基于深度迁移学习的无人机高分影像树种分类与制图[J]. 激光与光电子学进展, 2019, 56(7):072801. TENG Wenxiu, WEN Xiaorong, WANG Ni, et al. Tree species classification and mapping based on deep transfer learning with unmanned aerial vehicle high resolution images[J]. Laser & Optoelectronics Progress, 2019, 56(7):072801. [22] PAN S J, YANG Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359. [23] ZHU Xizhou, HU Han, LIN S, et al. Deformable ConvNets V2:more deformable, better results[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA:IEEE, 2019:9308-9316. [24] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV:IEEE, 2016. [25] 叶利华, 王磊, 张文文, 等. 高分辨率光学遥感场景分类的深度度量学习方法[J]. 测绘学报, 2019, 48(6):698-707. DOI:10.11947/j.AGCS.2019.20180434. YE Lihua, WANG Lei, ZHANG Wenwen, et al. Deep metric learning method for high resolution remote sensing image scene classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6):698-707. DOI:10.11947/j.AGCS.2019.20180434. [26] XIA Guisong, HU Jingwen, HU Fan, et al. AID:a benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3965-3981. [27] 滕文秀, 王妮, 陈泰生, 等. 基于深度对抗域适应的高分辨率遥感影像跨域分类[J]. 激光与光电子学进展, 2019, 56(11):112801. TENG Wenxiu, WANG Ni, CHEN Taisheng, et al. Deep adversarial domain adaptation method for cross-domain classification in high-resolution remote sensing images[J]. Laser & Optoelectronics Progress, 2019, 56(11):112801. [28] CHENG Gong, HAN Junwei, LU Xiaoqiang. Remote sensing image scene classification:benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10):1865-1883. [29] WEI Yufan, LUO Xiaobo, HU Lixin, et al. An improved unsupervised representation learning generative adversarial network for remote sensing image scene classification[J]. Remote Sensing Letters, 2020, 11(6):598-607. [30] LIU Xuning, ZHOU Yong, ZHAO Jiaqi, et al. Siamese convolutional neural networks for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8):1200-1204. [31] CHAIB S, LIU Huan, GU Yanfeng, et al. Deep feature fusion for VHR remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8):4775-4784. [32] WANG Guoli, FAN Bin, XIANG Shiming, et al. Aggregating rich hierarchical features for scene classification in remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2017, 10(9):4104-4115. [33] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI:IEEE, 2018. [34] WANG Chen, LIN Wei, TANG Pengfei. Multiple resolution block feature for remote-sensing scene classification[J]. International Journal of Remote Sensing, 2019, 40(17-18):6884-6904. [35] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of International Conference on Learning Representations. San Diego:ICLR, 2015:1-5. [36] WANG Yuliang, LI Mingshi. Urban impervious surface detection from remote sensing images:a review of the methods and challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(3):64-93. [37] WANG Yuliang, SU Huiyi, LI Ming. An improved model based detection of urban impervious surfaces using multiple features extracted from Rosis-3 hyperspectral images[J]. Remote Sensing, 2019, 11(2):136. |