[1] MIKOLAJCZYK K, SCHMID C. Scale & affine invariant interest point detectors[J]. International Journal of Computer Vision, 2004, 60(1):63-86. [2] 姚国标, 邓喀中, 张力, 等. 基于Harris-Affine的宽基线立体影像LSM匹配方法[J]. 中南大学学报(自然科学版), 2014, 45(8):2661-2668. YAO Guobiao, DENG Kazhong, ZHANG Li, et al. Least square matching method for wide baseline stereo images based on Harris-Affine features[J]. Journal of Central South University (Science and Technology), 2014, 45(8):2661-2668. [3] MIKOLAJCZYK K, TUYTELAARS T, SCHMID C, et al. A comparison of affine region detectors[J]. International Journal of Computer Vision, 2005, 65(1-2):43-72. [4] MATAS J, CHUM O, URBAN M, et al. Robust wide-baseline stereo from maximally stable extremal regions[J]. Image and Vision Computing, 2004, 22(10):761-767. [5] MOREL J M, YU Guoshen. ASIFT:a new framework for fully affine invariant image comparison[J]. SIAM Journal on Imaging Sciences, 2009, 2(2):438-469. [6] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110. [7] FAN Dazhao, DONG Yang, ZHANG Yongsheng. Satellite image matching method based on deep convolutional neural network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2):90-100. DOI:10.11947/j.JGGS.2019.0210. [8] GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1):1-15. DOI:10.11947/j.JGGS.2018.0101. [9] 刘瑾, 季顺平. 基于深度学习的航空遥感影像密集匹配[J]. 测绘学报, 2019, 48(9):1141-1150. DOI:10.11947/j.AGCS.2019.20180247. LIU Jin, JI Shunping. Deep learning based dense matchingfor aerial remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9):1141-1150. DOI:10.11947/j.AGCS.2019.20180247. [10] 袁修孝, 袁巍, 许殊, 等. 航摄影像密集匹配的研究进展与展望[J]. 测绘学报, 2019, 48(12):1542-1550. DOI:10.11947/j.AGCS.2019.20190453. YUAN Xiuxiao, YUAN Wei, XU Shu, et al. Research developments and prospects on dense image matching in photogrammetry[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12):1542-1550. DOI:10.11947/j.AGCS.2019.20190453. [11] YI K M, TRULLS E, LEPETIT V, et al. LIFT:learned invariant feature transform[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands:Springer, 2016:467-483. [12] VERDIE Y, YI K M, FUA P, et al. TILDE:a temporally invariant learned DEtector[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA:IEEE, 2015. [13] TIAN Yurun, FAN Bin, WU Fuchao. L2-Net:deep learning of discriminative patch descriptor in Euclidean space[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI:IEEE, 2017:661-669. [14] MISHCHUK A, MISHKIN D, RADENOVIC' F, et al. Working hard to know your neighbor's margins:local descriptor learning loss[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, CA:Curran Associates Inc., 2017:4826-4837 [15] HOFFER E, AILON N. Deep metric learning using tripletnetwork[C]//Proceedings of the 3rd International Workshop on Similarity-Based Pattern Recognition. Copenhagen, Denmark:Springer, 2015. [16] IOFFE S, SZEGEDY C. Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]//Proceedings of 2015 International Conference on Machine Learning.[S.l.]:GMLR, 2015. [17] GLOROT X, BORDES A, BENGIO Y, et al. Deep sparse rectifier neural networks[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Fort Lauderdale, FL:W&CP, 2011:315-323. [18] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE, 2017. [19] YI K M, VERDIE Y, FUA P, et al. Learning to assign orientations to feature points[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV:IEEE, 2016:107-116. [20] 陈敏, 朱庆, 何海清, 等. 面向城区宽基线立体像对视角变化的结构自适应特征点匹配[J]. 测绘学报, 2019, 48(9):1129-1140. DOI:10.11947/j.AGCS.2019.20180266. CHEN Min, ZHU Qing, HE Haiqing, et al. Structureadaptive feature point matching for urban area wide-baseline images with viewpoint variation[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9):1129-1140. DOI:10.11947/j.AGCS.2019.20180266. [21] BROWN M, HUA Gang, WINDER S. Discriminative learning of local image descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(1):43-57. [22] 姚国标, 邓喀中, 张力, 等. 融合互补仿射不变特征的倾斜立体影像高精度自动配准方法[J]. 测绘学报, 2013, 42(6):869-876, 883. YAO Guobiao, DENG Kazhong, ZHANG Li, et al. An automated registration method with high-accuracy for oblique stereo images based on complementary affine invariant features[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(6):869-876, 883. [23] 李欣, 杨宇辉, 杨博, 等. 利用方向相位特征进行多源遥感影像匹配[J]. 武汉大学学报(信息科学版), 2020, 45(4):488-494. LI Xin, YANG Yuhui, YANG Bo, et al. A multi-source remote sensing image matching method using directional phase feature[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4):488-494. [24] 袁修孝, 袁巍, 陈时雨. 基于图论的遥感影像误匹配点自动探测方法[J]. 武汉大学学报(信息科学版), 2018, 43(12):1854-1860. YUAN Xiuxiao, YUAN Wei, CHEN Shiyu. An automatic detection method of mismatching points in remote sensing images based on graph theory[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1854-1860. [25] TIAN Yurun, YU Xin, FAN Bin, et al. SOSNet:second order similarity regularization for local descriptor learning[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA:IEEE, 2019:11016-11025. [26] LI S, HE F, DU B, et al. Fast spatio-temporal residual network for video super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:GMLR, 2019. |