Acta Geodaetica et Cartographica Sinica ›› 2025, Vol. 54 ›› Issue (1): 104-122.doi: 10.11947/j.AGCS.2025.20240014
• Photogrammetry and Remote Sensing • Previous Articles
Jichao LÜ(
), Rui ZHANG(
), Xu HE, Ruikai HONG, Age SHAMA, Guoxiang LIU
Received:2024-01-09
Revised:2024-12-10
Published:2025-02-17
Contact:
Rui ZHANG
E-mail:lvjichao@my.swjtu.edu.cn;zhangrui@swjtu.edu.cn
About author:LÜ Jichao (1996—), male, PhD candidate, majors in intelligent monitoring and risk assessment of landslides. E-mail: lvjichao@my.swjtu.edu.cn
Supported by:CLC Number:
Jichao LÜ, Rui ZHANG, Xu HE, Ruikai HONG, Age SHAMA, Guoxiang LIU. Multi-branch network assessment and dynamic change analysis of wide-area landslide susceptibility[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 104-122.
Tab. 1
Data sources"
| 数据 | 来源 | 数据 | 来源 |
|---|---|---|---|
| DEM | 地表粗糙度 | 30 m SRTM DEM | |
| 地层岩性 | 地形起伏度 | 30 m SRTM DEM | |
| 断层 | 地形湿度指数 | 30 m SRTM DEM | |
| 地面峰值加速度 | 曲率 | 30 m SRTM DEM | |
| 河流 | 平面曲率 | 30 m SRTM DEM | |
| 道路 | 剖面曲率 | 30 m SRTM DEM | |
| 降雨 | 坡向 | 30 m SRTM DEM | |
| NDVI | GEE/Landsat-8 | 坡度 | 30 m SRTM DEM |
Tab. 3
Landslide susceptibility classification statistical results"
| 模型 | 易发性等级 | 分级栅格数 | 百分比/(%) | 滑坡点数 | 百分比/(%) | 频率比 |
|---|---|---|---|---|---|---|
| 极低易发区 | 103 224 760 | 33.93 | 29 | 1.70 | 0.05 | |
| 低易发区 | 89 398 692 | 29.38 | 135 | 7.93 | 0.27 | |
| 随机森林 | 中等易发区 | 56 627 969 | 18.61 | 276 | 16.21 | 0.87 |
| 高易发区 | 41 894 540 | 13.77 | 650 | 38.19 | 2.77 | |
| 极高易发区 | 13 109 914 | 4.31 | 612 | 35.96 | 8.34 | |
| 极低易发区 | 23 860 212 | 7.84 | 14 | 0.82 | 0.10 | |
| 低易发区 | 150 562 987 | 49.48 | 320 | 18.80 | 0.38 | |
| 浅层CNN | 中等易发区 | 58 941 341 | 19.37 | 312 | 18.33 | 0.95 |
| 高易发区 | 66 053 031 | 21.70 | 915 | 53.76 | 2.48 | |
| 极高易发区 | 4 838 304 | 4.30 | 141 | 8.28 | 5.21 | |
| 极低易发区 | 77 173 862 | 25.36 | 112 | 6.58 | 0.26 | |
| 低易发区 | 69 152 928 | 22.73 | 158 | 9.28 | 0.41 | |
| ResNet101 | 中等易发区 | 65 258 032 | 21.45 | 347 | 20.39 | 0.96 |
| 高易发区 | 59 334 304 | 19.50 | 598 | 35.14 | 1.80 | |
| 极高易发区 | 33 336 749 | 10.96 | 487 | 28.61 | 2.61 | |
| 极低易发区 | 151 964 854 | 49.94 | 26 | 1.52 | 0.03 | |
| 低易发区 | 47 612 221 | 15.64 | 42 | 2.46 | 0.16 | |
| 多分支网络模型 | 中等易发区 | 58 740 480 | 19.30 | 126 | 7.40 | 0.38 |
| 高易发区 | 33 216 672 | 10.91 | 386 | 22.67 | 2.08 | |
| 极高易发区 | 12 721 648 | 4.18 | 1122 | 65.92 | 15.77 |
Tab. 5
Results of ablation experiments"
| 模型 | 易发性等级 | 分级栅格数 | 百分比/(%) | 滑坡点数 | 百分比/(%) | 频率比 |
|---|---|---|---|---|---|---|
| 去除自适应定权机制 | 极低易发区 | 78 971 539 | 25.96 | 29 | 1.70 | 0.07 |
| 低易发区 | 61 998 992 | 20.38 | 70 | 4.11 | 0.20 | |
| 中等易发区 | 50 522 720 | 16.61 | 143 | 8.40 | 0.51 | |
| 高易发区 | 46 883 968 | 15.41 | 372 | 21.86 | 1.42 | |
| 极高易发区 | 65 878 656 | 21.65 | 1088 | 63.92 | 2.95 | |
| 去除伪孪生网络结构 | 极低易发区 | 89 695 094 | 29.48 | 135 | 7.93 | 0.27 |
| 低易发区 | 70 354 349 | 23.12 | 200 | 11.75 | 0.51 | |
| 中等易发区 | 62 070 096 | 20.40 | 318 | 18.68 | 0.92 | |
| 高易发区 | 43 871 088 | 14.42 | 419 | 24.62 | 1.71 | |
| 极高易发区 | 38 265 248 | 12.58 | 630 | 37.02 | 2.94 |
| [1] | CHEN Cheng, FAN Lei. An attribution deep learning interpretation model for landslide susceptibility mapping in the Three Gorges Reservoir area[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 3323668. |
| [2] | ZHANG Rui, LÜ Jichao, YANG Yunjie, et al. Analysis of the impact of terrain factors and data fusion methods on uncertainty in intelligent landslide detection[J]. Landslides, 2024, 21(8): 1849-1864. |
| [3] | LÜ Jichao, ZHANG Rui, SHAMA A, et al. Exploring the spatial patterns of landslide susceptibility assessment using interpretable Shapley method: mechanisms of landslide formation in the Sichuan-Tibet region[J]. Journal of Environmental Management, 2024, 366: 121921. |
| [4] | CHEN Li, MA Peifeng, YU Chang, et al. Landslide susceptibility assessment in multiple urban slope settings with a landslide inventory augmented by InSAR techniques[J]. Engineering Geology, 2023, 327: 107342. |
| [5] | LIU Qiang, TANG Aiping, HUANG Delong. Exploring the uncertainty of landslide susceptibility assessment caused by the number of non-landslides[J]. CATENA, 2023, 227: 107109. |
| [6] | HUANG Wubiao, DING Mingtao, LI Zhenhong, et al. Landslide susceptibility mapping and dynamic response along the Sichuan-Tibet transportation corridor using deep learning algorithms[J]. CATENA, 2023, 222: 106866. |
| [7] | FANG Zhice, WANG Yi, PENG Ling, et al. Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping[J]. Computers & Geosciences, 2020, 139: 104470. |
| [8] | VAN BEEK L P H, VAN ASCH T W J. Regional assessment of the effects of land-use change on landslide hazard by means of physically based modelling[J]. Natural Hazards, 2004, 31(1): 289-304. |
| [9] | 姬建, 崔红志, 佟斌, 等. 基于物理过程不确定性的降雨诱发浅层滑坡易发性快速区划:GIS-FORM技术开发与应用[J]. 岩石力学与工程学报, 2024, 43: 838-850. |
| JI Jian, CUI Hongzhi, TONG Bin, et al. Fast zoning of rainfall-induced shallow landslide susceptibility based on physical process uncertainty: development and application of GIS-FORM[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43: 838-850. | |
| [10] | KAYASTHA P, DHITAL M R, DE SMEDT F. Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study from the Tinau watershed, west Nepal[J]. Computers & Geosciences, 2013, 52: 398-408. |
| [11] | HONG Haoyuan, ILIA I, TSANGARATOS P, et al. A hybrid fuzzy weight of evidence method in landslide susceptibility analysis on the Wuyuan area, China[J]. Geomorphology, 2017, 290: 1-16. |
| [12] | LEE S, PRADHAN B. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models[J]. Landslides, 2007, 4(1): 33-41. |
| [13] | 黄发明, 欧阳慰平, 蒋水华, 等. 考虑机器学习建模中训练/测试集时空划分原则的滑坡易发性预测建模[J]. 地球科学, 2024, 49(5): 1607-1618. |
| HUANG Faming, OUYANG Weiping, JIANG Shuihua, et al. Landslide susceptibility prediction considering spatio-temporal division principle of training/testing datasets in machine learning models[J]. Earth Science, 2024, 49(5): 1607-1618. | |
| [14] | 李正, 冷亮, 孙永鑫, 等. 基于信息量-机器学习耦合模型的水电梯级开发流域滑坡易发性评价[J]. 测绘通报, 2024(): 237-241. |
| LI Zheng, LENG Liang, SUN Yongxin, et al. Landslide susceptibility assessment in the river cascade development basin based on the IV-LM coupling model[J]. Bulletin of Surveying and Mapping, 2024(): 237-241. | |
| [15] | YOUSSEF A M, POURGHASEMI H R. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha basin, Asir region, Saudi Arabia[J]. Geoscience Frontiers, 2021, 12(2): 639-655. |
| [16] | AYALEW L, YAMAGISHI H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko mountains, central Japan[J]. Geomorphology, 2005, 65(1/2): 15-31. |
| [17] | SUN Deliang, WEN Haijia, WANG Danzhou, et al. A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm[J]. Geomorphology, 2020, 362: 107201. |
| [18] | SUN Deliang, XU Jiahui, WEN Haijia, et al. Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: a comparison between logistic regression and random forest[J]. Engineering Geology, 2021, 281: 105972. |
| [19] | BADOLA S, MISHRA V N, PARKASH S. Landslide susceptibility mapping using XGBoost machine learning method[C]//Proceedings of 2023 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing. Hyderabad: IEEE, 2023: 1-4. |
| [20] | KAVZOGLU T, TEKE A. Advanced hyperparameter optimization for improved spatial prediction of shallow landslides using extreme gradient boosting (XGBoost)[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(5): 201. |
| [21] | MARJANOVIĆ M, KOVAČEVIĆ M, BAJAT B, et al. Landslide susceptibility assessment using SVM machine learning algorithm[J]. Engineering Geology, 2011, 123(3): 225-234. |
| [22] | HUANG Yu, ZHAO Lu. Review on landslide susceptibility mapping using support vector machines[J]. CATENA, 2018, 165: 520-529. |
| [23] | LEE S, RYU J H, WON J S, et al. Determination and application of the weights for landslide susceptibility mapping using an artificial neural network[J]. Engineering Geology, 2004, 71(3/4): 289-302. |
| [24] | DI NAPOLI M, CAROTENUTO F, CEVASCO A, et al. Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability[J]. Landslides, 2020, 17(8): 1897-1914. |
| [25] | HUANG Faming, ZHANG Jing, ZHOU Chuangbing, et al. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction[J]. Landslides, 2020, 17(1): 217-229. |
| [26] | YEON Y K, HAN J G, RYU K H. Landslide susceptibility mapping in Injae, Korea, using a decision tree[J]. Engineering Geology, 2010, 116(3/4): 274-283. |
| [27] | PHAM B T, NGUYEN-THOI T, QI Chongchong, et al. Coupling RBF neural network with ensemble learning techniques for landslide susceptibility mapping[J]. CATENA, 2020, 195: 104805. |
| [28] | YI Yaning, ZHANG Zhijie, ZHANG Wanchang, et al. Landslide susceptibility mapping using multiscale sampling strategy and convolutional neural network: a case study in Jiuzhaigou region[J]. CATENA, 2020, 195: 104851. |
| [29] | YANG Xin, LIU Rui, YANG Mei, et al. Incorporating landslide spatial information and correlated features among conditioning factors for landslide susceptibility mapping[J]. Remote Sensing, 2021, 13(11): 2166. |
| [30] | HAKIM W L, REZAIE F, NUR A S, et al. Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea[J]. Journal of Environmental Management, 2022, 305: 114367. |
| [31] | WANG Yi, FANG Zhice, HONG Haoyuan. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan county, China[J]. Science of the Total Environment, 2019, 666: 975-993. |
| [32] | 谭林, 张璐璐, 魏鑫, 等. 基于U-Net语义分割网络的区域滑坡易发性评价方法和跨地区泛化能力研究[J/OL]. 土木工程学报: 1-14[2023-12-12]. https://doi.org/10.15951/j.tmgcxb.23110923. |
| TAN Lin, ZHANG Lulu, WEI Xin, et al. Study on regional landslide susceptibility assessment method based on U-Net semantic segmentation network and its cross-generalization ability[J/OL]. China Civil Engineering Journal: 1-14[2023-12-12]. https://doi.org/10.15951/j.tmgcxb.23110923. | |
| [33] | CHEN Yangyang, MING Dongping, LING Xiao, et al. Landslide susceptibility mapping using feature fusion-based CPCNN-ML in Lantau island, Hong Kong[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3625-3639. |
| [34] | ASLAM B, ZAFAR A, KHALIL U. Comparative analysis of multiple conventional neural networks for landslide susceptibility mapping[J]. Natural Hazards, 2023, 115(1): 673-707. |
| [35] | GE Yunfeng, LIU Geng, TANG Huiming, et al. Comparative analysis of five convolutional neural networks for landslide susceptibility assessment[J]. Bulletin of Engineering Geology and the Environment, 2023, 82(10): 377. |
| [36] | 金必晶, 曾韬睿, 桂蕾, 等. 考虑未来土地利用动态情景的滑坡易发性制图[J]. 地球信息科学学报, 2024, 26(6): 1486-1499. |
| JIN Bijing, ZENG Taorui, GUI Lei, et al. Mapping the landslide susceptibility considering future land use dynamics scenario[J]. Journal of Geo-Information Science, 2024, 26(6): 1486-1499. | |
| [37] | GAO Binghai, HE Yi, CHEN Xueye, et al. A deep neural network framework for landslide susceptibility mapping by considering time-series rainfall[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 5946-5969. |
| [38] | 林炫歆, 肖桂荣, 周侯伯. 顾及土地利用动态变化的滑坡易发性评估方法[J]. 地球信息科学学报, 2023, 25(5): 953-966. |
| LIN Xuanxin, XIAO Guirong, ZHOU Houbo. Landslide susceptibility assessment method considering land use dynamic change[J]. Journal of Geo-information Science, 2023, 25(5): 953-966. | |
| [39] | HE Yi, ZHAO Zhanao, ZHU Qing, et al. An integrated neural network method for landslide susceptibility assessment based on time-series InSAR deformation dynamic features[J]. International Journal of Digital Earth, 2024, 17(1): 2295408. |
| [40] | 高秉海, 何毅, 张立峰, 等. 顾及InSAR形变的CNN滑坡易发性动态评估:以刘家峡水库区域为例[J]. 岩石力学与工程学报, 2023, 42(2): 450-465. |
| GAO Binghai, HE Yi, ZHANG Lifeng, et al. Dynamic evaluation of landslide susceptibility by CNN considering InSAR deformation: a case study of Liujiaxia reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 450-465. | |
| [41] | 王启盛, 熊俊楠, 程维明, 等. 耦合统计方法、机器学习模型和聚类算法的滑坡易发性评价方法[J]. 地球信息科学学报, 2024, 26(3): 620-637. |
| WANG Qisheng, XIONG Junnan, CHENG Weiming, et al. Landslide susceptibility mapping methods coupling with statistical methods, machine learning models and clustering algorithms[J]. Journal of Geo-information Science, 2024, 26(3): 620-637. | |
| [42] | 赵占骜, 王继周, 毛曦, 等. 多维CNN耦合的滑坡易发性评价方法[J]. 武汉大学学报(信息科学版), 2024, 49(8): 1466-1481. |
| ZHAO Zhan'ao, WANG Jizhou, MAO Xi, et al. A multi-dimensional CNN coupled landslide susceptibility assessment method[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1466-1481. | |
| [43] | ZHAO Zeyang, CHEN Tao, DOU Jie, et al. Landslide susceptibility mapping considering landslide local-global features based on CNN and Transformer[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 7475-7489. |
| [44] | ALQADHI S, MALLICK J, ALKAHTANI M. Integrated deep learning with explainable artificial intelligence for enhanced landslide management[J]. Natural Hazards, 2024, 120(2): 1343-1365. |
| [45] | YANG Qiyuan, WANG Xianmin, YIN Jing, et al. A novel CGBoost deep learning algorithm for coseismic landslide susceptibility prediction[J]. Geoscience Frontiers, 2024, 15(2): 101770. |
| [46] | 郑德凤, 高敏, 闫成林, 等. 基于卷积神经网络的滑坡易发性评价:以辽南仙人洞国家级自然保护区为例[J]. 地球科学, 2024, 49(5): 1654-1664. |
| ZHENG Defeng, GAO Min, YAN Chenglin, et al. Susceptibility assessment of landslides based on convolutional neural network model: a case study from Xianrendong national nature reserve in southern Liaoning province[J]. Earth Science, 2024, 49(5): 1654-1664. | |
| [47] | FANG Bo, CHEN Gang, PAN Li, et al. GAN-based Siamese framework for landslide inventory mapping using bi-temporal optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(3): 391-395. |
| [48] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. |
| [49] | THI NGO P T, PANAHI M, KHOSRAVI K, et al. Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran[J]. Geoscience Frontiers, 2021, 12(2): 505-519. |
| [50] | GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[EB/OL]. [2023-12-12]. http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf. |
| [51] | LOSHCHILOV I, HUTTER F. SGDR: stochastic gradient descent with warm restarts[EB/OL]. [2023-12-12]. https://doi.org/10.48550/arXiv.1608.03983. |
| [52] | 崔鹏, 邹强. 川藏交通廊道山地灾害演化规律与工程风险[M]. 北京: 科学出版社, 2021. |
| CUI Peng, ZOU Qiang. Evolution law and engineering risk of mountain disasters in Sichuan-Tibet traffic corridor[M]. Beijing: Science Press, 2021. | |
| [53] | 甘孜州水利局. 甘孜州2019年水资源公报[R/OL]. [2023-12-12]. https://slj.gzz.gov.cn/tzgs/article/533037. |
| Ganzi State Water Resources Bureau. Ganzi state water resources bulletin 2019[R/OL]. [2023-12-12]. https://slj.gzz.gov.cn/tzgs/article/533037. |
| [1] | Zhi LIU, Shuyuan YANG, Zifan YU, Zhixi FENG, Quanwei GAO, Min WANG. Fast SAR autofocus based on convolutional neural networks [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 610-619. |
| [2] | LIAO Zhaohong, ZHANG Yichen, YANG Biao, LIN Mingchun, SUN Wenbo, GAO Zhi. Monocular height estimation method of remote sensing image based on Swin Transformer-CNN and its application in highway road construction sites [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 344-352. |
| [3] | PI Xinyu, ZENG Yongnian, WANG Pancheng. Spatially enhanced spatio-temporal fusion model for heterogeneity regions [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(10): 1714-1723. |
| [4] | ZHANG Yuxin, YAN Qingsong, DENG Fei. Multi-path RSU network method for high-resolution remote sensing image building extraction [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 135-144. |
| [5] | GONG Jianya, XU Yue, HU Xiangyun, JIANG Liangcun, ZHANG Mi. Status analysis and research of sample database for intelligent interpretation of remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1013-1022. |
| [6] | YANG Qiulian, LIU Yanfei, DING Lele, MENG Fanxiao. High spatial resolution imagery scene classification based on semi-supervised CNNs [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 930-938. |
| [7] | YE Famao, MENG Xianglong, DONG Meng, Nie Yunju, GE Yun, CHEN Xiaoyong. Remote sensing image retrieval with ant colony optimization and a weighted image-to-class distance [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 612-620. |
| [8] | SHI Huihui, XU Yannan, TENG Wenxiu, WANG Ni. Scene classification of high-resolution remote sensing imagery based on deep transfer deformable convolutional neural networks [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 652-663. |
| [9] | ZHANG Yongjun, ZHANG Zuxun, GONG Jianya. Generalized photogrammetry of spaceborne, airborne and terrestrial multi-source remote sensing datasets [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1): 1-11. |
| [10] | XIE Zhiwen, WANG Haijun, ZHANG Bin, HUANG Xinxin. Urban expansion cellular automata model based on multi-structures convolutional neural networks [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3): 375-385. |
| [11] | YU Donghang, GUO Haitao, ZHANG Baoming, ZHAO Chuan, LU Jun. Aircraft detection in remote sensing images using cascade convolutional neural networks [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8): 1046-1058. |
| [12] | HUANG Bo, ZHAO Yongquan. Research Status and Prospect of Spatiotemporal Fusion of Multi-source Satellite Remote Sensing Imagery [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1492-1499. |
| [13] | . Multi-source Remote Sensing Image Matching Based on Contourlet-domain Hausdorff Distance and Particle Swarm Optimization [J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(6): 599-604. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||