[1] PESARESI M, GERHARDINGER A, KAYITAKIRE F. A robust built-up area presence index by anisotropic rotation-invariant textural measure[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2008, 1(3):180-192. [2] JIN Xiaoying, DAVIS C H. Automated building extraction from high-resolution satellite imagery in urban areas using structural, contextual, and spectral information[J]. EURASIP Journal on Advances in Signal Processing, 2005,2005(14):2196-2206. [3] HUANG Xin, ZHANG Liangpei. Morphological building/shadow index for building extraction from high-resolution imagery over urban areas[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(1):161-172. [4] JUNG C, SCHRAMM R. Rectangle detection based on a windowed hough transform[J]. Brazilian Symposium of Computer Graphic and Image Processing. 2004, 2004(4):113-120. [5] OK A O, SENARAS C, YUKSEL B. Automated detection of arbitrarily shaped buildings in complex environments from monocular VHR optical satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3):1701-1717. [6] 张亚一, 费鲜芸, 王健, 等. 基于高分辨率遥感影像的建筑物提取方法综述[J]. 测绘与空间地理信息, 2020, 43(4):76-79. ZHANG Yayi, FEI Xianyun, WANG Jian, et al. Survey of building extraction methods based on high resolution remote sensing images[J]. Geomatics & Spatial Information Technology, 2020, 43(4):76-79. [7] 季顺平, 魏世清. 遥感影像建筑物提取的卷积神经元网络与开源数据集方法[J]. 测绘学报, 2019, 48(4):448-459.DOI:10.11947/j.AGCS.2019.20180206. JI Shunping, WEI Shiqing. Building extraction via convolutional neural network from an open remote sensing building dataset[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4):448-459. DOI:10.11947/j.AGCS.2019.20180206. [8] GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Journal of Geodesy and Geoinformation Science. 2018, 1(1):1-15. [9] DAI Yuchao, ZHANG Jing, HE Mingyi, et al. Salient object detection from multi-spectral remote sensing images with deep residual network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2):101-110. [10] SUN Long, WU Tao, SUN Guangcai, et al. Object detection research of SAR image using improved faster region-based convolutional neural network[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3):18-28. [11] HE Hao, WANG Shuyang, WANG Shicheng, et al. A road extraction method for remote sensing image based on encoder-decoder network[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2):16-25. [12] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4):640-651. [13] RONNEBERGER O, FISCHER P, BROX T. U-Net:Convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany:Springer, 2015:234-241. [14] ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA:IEEE, 2017:6230-6239. [15] LIN Guosheng, MILAN A, SHEN Chunhua, et al. RefineNet:multi-path refinement networks for high-resolution semantic segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA:IEEE, 2017:5168-5177. [16] 崔卫红, 熊宝玉, 张丽瑶. 多尺度全卷积神经网络建筑物提取[J]. 测绘学报, 2019, 48(5):597-608. DOI:10.11947/j.AGCS.2019.20180062. CUI Weihong, XIONG Baoyu, ZHANG Liyao. Multi-scale fully convolutional neural network for building extraction[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(5):597-608.DOI:10.11947/j.AGCS.2019.20180062. [17] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of 2017 IEEE Conference on Neural Information Processing Systems.[S.l.]:IEEE,2017. [18] WANG Xiaolong, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA:IEEE, 2018:7794-7803. [19] FU Jun, LIU Jing, TIAN Haijie, et al. Dual attention network for scene segmentation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach, CA, USA:IEEE, 2019:3141-3149. [20] TAO A, SAPRA K, CATANZARO B. Hierarchical multi-scale attention for semantic segmentation[C]//Proceedings of 2020 IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE,2020. [21] SUN Ke, XIAO Bin, LIU Dong, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA:IEEE, 2019:5686-5696. [22] QIN Xuebin, ZHANG Zichen, HUANG Chenyang, et al. U2-Net:Going deeper with nested U-structure for salient object detection[J]. Pattern Recognition, 2020, 106:107404. [23] LIU Penghua, LIU Xiaoping, LIU Mengxi, et al. Building footprint extraction from high-resolution images via spatial residual inception convolutional neural network[J]. Remote Sensing, 2019, 11(7):830. [24] FENG Wenqing, SUI Haigang, HUA Li, et al. Building extraction from VHR remote sensing imagery by combining an improved deep convolutional encoder-decoder architecture and historical land use vector map[J]. International Journal of Remote Sensing, 2020, 41(17):6595-6617. [25] ZHU Qing, LIAO Cheng, HU Han, et al. MAP-net:multiple attending path neural network for building footprint extraction from remote sensed imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7):6169-6181. [26] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA:IEEE, 2016:770-778. [27] BISHOP C M, HINTON G. Neural networks for pattern recognition[M]. Oxford:Oxford University Press, 1995. [28] MAGGIORI E, TARABALKA Y, CHARPIAT G, et al. Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark[C]//Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth, TX, USA:IEEE, 2017:3226-3229. |