Acta Geodaetica et Cartographica Sinica ›› 2025, Vol. 54 ›› Issue (1): 90-103.doi: 10.11947/j.AGCS.2025.20230302
• Photogrammetry and Remote Sensing • Previous Articles
Zhenghua ZHANG(
), Guoliang CHEN(
)
Received:2023-07-21
Revised:2024-12-05
Published:2025-02-17
Contact:
Guoliang CHEN
E-mail:zh_zhang@cumt.edu.cn;chgl_cumt@163.com
About author:ZHANG Zhenghua (1993—), male, PhD, postdoctor, majors in LiDAR-based localization and navigation. E-mail: zh_zhang@cumt.edu.cn
Supported by:CLC Number:
Zhenghua ZHANG, Guoliang CHEN. A lightweight rotation-invariant network for LiDAR-based place recognition[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 90-103.
Tab. 2
Experimental results on the Oxford dataset"
| 方法 | 参数量 | 运算时间/ms | 准确率/(%) | 最近邻召回率/(%) | 前1%召回率/(%) | F1值 |
|---|---|---|---|---|---|---|
| PointNetVLAD | 19.78×106 | 15 | 11.96 | 15.01 | 31.31 | 0.20 |
| PCAN | 20.42×106 | 55 | 12.82 | 14.81 | 32.81 | 0.21 |
| EPC-Net | 4.70×106 | 26 | 59.97 | 59.78 | 80.93 | 0.74 |
| MinkLoc3D | 1.06×106 | 12 | 85.62 | 74.26 | 90.14 | 0.91 |
| MinkLoc++ | 1.06×106 | 12 | 73.70 | 80.79 | 92.75 | 0.84 |
| PPT-Net | 13.39×106 | 22 | 61.03 | 61.55 | 82.82 | 0.75 |
| SVT-Net | 0.94×106 | 11 | 77.23 | 72.21 | 89.41 | 0.86 |
| LWR-Net | 0.44×106 | 10 | 41.39 | 40.93 | 62.80 | 0.57 |
| SOE-Net | 19.40×106 | 22 | 86.56 | 86.72 | 95.60 | 0.92 |
| RPR-Net | 1.10×106 | 238 | — | 81.00 | 92.20 | — |
| VNI-Net | 2.20×106 | 574 | — | 85.50 | 94.40 | — |
| RIP-Net | 0.30×106 | 9 | 87.50 | 87.57 | 95.83 | 0.93 |
Tab. 3
Experimental results on the generalization performance of the Inhouse dataset"
| 方法 | 大学校园场景 | 居民区场景 | 商业区场景 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 最近邻召回率/(%) | 前1%召回率/(%) | F1值 | 最近邻召回率/(%) | 前1%召回率/(%) | F1值 | 最近邻召回率/(%) | 前1%召回率/(%) | F1值 | |
| PointNetVLAD | 18.16 | 33.76 | 0.20 | 15.17 | 28.42 | 0.20 | 17.39 | 26.12 | 0.27 |
| PCAN | 10.56 | 25.00 | 0.18 | 11.95 | 23.31 | 0.17 | 12.99 | 19.42 | 0.22 |
| EPC-Net | 60.10 | 80.56 | 0.75 | 51.89 | 70.77 | 0.68 | 57.48 | 69.44 | 0.73 |
| MinkLoc3D | 57.17 | 68.27 | 0.81 | 44.88 | 60.54 | 0.77 | 46.13 | 63.79 | 0.82 |
| MinkLoc++ | 65.91 | 81.83 | 0.74 | 65.73 | 75.94 | 0.63 | 57.11 | 76.20 | 0.63 |
| PPT-Net | 42.53 | 69.08 | 0.65 | 54.83 | 68.14 | 0.60 | 40.59 | 61.56 | 0.73 |
| SVT-Net | 53.47 | 69.00 | 0.79 | 52.28 | 68.34 | 0.76 | 67.44 | 78.76 | 0.81 |
| LWR-Net | 41.80 | 64.42 | 0.60 | 41.66 | 62.96 | 0.58 | 56.22 | 68.76 | 0.73 |
| SOE-Net | 77.32 | 90.71 | 0.87 | 76.08 | 89.78 | 0.86 | 76.35 | 81.32 | 0.89 |
| VNI-Net | 85.30 | 95.00 | — | 83.30 | 91.50 | — | 81.40 | 86.80 | — |
| RPR-Net | 83.20 | 94.50 | — | 83.30 | 91.30 | — | 80.40 | 86.40 | — |
| RIP-Net | 85.35 | 95.31 | 0.91 | 83.49 | 92.10 | 0.89 | 77.96 | 84.52 | 0.87 |
Tab. 4
Test on different scenarios in MulRan dataset"
| 方法 | 韩国大田会议中心场景 | 河堤场景 | 韩国科学技术院场景 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 准确率/(%) | 召回率/(%) | F1值 | 准确率/(%) | 召回率/(%) | F1值 | 准确率/(%) | 召回率/(%) | F1值 | |
| MinkLoc3D | 10.37 | 35.81 | 0.17 | 8.95 | 31.72 | 0.14 | 9.12 | 21.56 | 0.14 |
| MinkLoc++ | 12.54 | 33.24 | 0.19 | 9.86 | 31.43 | 0.15 | 10.55 | 38.21 | 0.17 |
| SVT-Net | 11.21 | 40.79 | 0.18 | 8.37 | 34.62 | 0.13 | 12.45 | 39.18 | 0.19 |
| RIP-Net | 92.17 | 99.31 | 0.96 | 88.37 | 99.19 | 0.94 | 90.66 | 98.79 | 0.95 |
| [1] | 戴德云. 基于多元信息融合的场景多层级识别方法研究[D]. 合肥: 中国科学技术大学, 2022. |
| DAI Deyun. Research on multi-level scene recognition method based on multi-information fusion[D]. Hefei: University of Science and Technology of China, 2022. | |
| [2] |
杨元喜. 弹性PNT基本框架[J]. 测绘学报, 2018, 47(7): 893-898. DOI:.
doi: 10.11947/J.AGCS.2018.20180149 |
|
YANG Yuanxi. Resilient PNT concept frame[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7): 893-898. DOI:.
doi: 10.11947/j.AGCS.2018.20180149 |
|
| [3] |
张星, 林静, 李清泉, 等. 结合感知哈希与空间约束的室内连续视觉定位方法[J]. 测绘学报, 2021, 50(12): 1639-1649.DOI:.
doi: 10.11947/J.AGCS.2021.20200286 |
|
ZHANG Xing, LIN Jing, LI Qingquan, et al. Indoor continuous visual positioning method combining perceptual hashing and spatial constraints[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(12): 1639-1649.DOI:.
doi: 10.11947/J.AGCS.2021.20200286 |
|
| [4] | 张恒才, 蔚保国, 秘金钟, 等. 综合PNT场景增强系统研究进展及发展趋势[J]. 武汉大学学报(信息科学版), 2023, 48(4): 491-505. |
| ZHANG Hengcai, YU Baoguo, BEI Jinzhong, et al. A survey of scene-based augmentation systems for conprehensive PNT[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 491-505. | |
| [5] | 张正华. 基于深度学习的激光雷达点云实时配准与场景识别算法研究[D]. 徐州: 中国矿业大学, 2022. |
| ZHANG Zhenghua. Study on deep-learning-based real-time registration and place recognition algorithm for LiDAR point cloud[D]. Xuzhou: China University of Mining and Technology, 2022. | |
| [6] | WOHLKINGER W, VINCZE M. Ensemble of shape functions for 3D object classification[C]//Proceedings of 2011 IEEE International Conference on Robotics and Biomimetics. Karon Beach: IEEE, 2011. |
| [7] | HE Li, WANG Xiaolong, ZHANG Hong. M2DP: a novel 3D point cloud descriptor and its application in loop closure detection[C]//Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon: IEEE, 2016: 231-237. |
| [8] | KIM G, KIM A. Scan context: egocentric spatial descriptor for place recognition within 3D point cloud map[C]//Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid: IEEE, 2018: 4802-4809. |
| [9] |
杨必胜, 董震. 点云智能研究进展与趋势[J]. 测绘学报, 2019, 48(12): 1575-1585.DOI:.
doi: 10.11947/j.AGCS.2019.20190465 |
|
YANG Bisheng, DONG Zhen. Progress and perspective of point cloud intelligence[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1575-1585.DOI:.
doi: 10.11947/j.AGCS.2019.20190465 |
|
| [10] | UY M A, LEE G H. PointNetVLAD: deep point cloud based retrieval for large-scale place recognition[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. |
| [11] | CHARLES R Q, HAO Su, MO Kaichun, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. |
| [12] | ARANDJELOVIC R, GRONAT P, TORII A, et al. NetVLAD: CNN architecture for weakly supervised place recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. |
| [13] | ZHANG Wenxiao, XIAO Chunxia. PCAN: 3D attention map learning using contextual information for point cloud based retrieval[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. |
| [14] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. [2023-12-10]. https://doi.org/10.48550/arXiv.1706.03762. |
| [15] | LIU Zhe, ZHOU Shunbo, SUO Chuanzhe, et al. LPD-net: 3D point cloud learning for large-scale place recognition and environment analysis[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019. |
| [16] | HUI L, CHENG M, XIE J, et al. Efficient 3D point cloud feature learning for large-scale place recognition[J]. IEEE Transactions on Image Processing, 2022, 31: 1258-1270. |
| [17] | KOMOROWSKI J. MinkLoc3D: point cloud based large-scale place recognition[C]//Proceedings of 2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021. |
| [18] | RADENOVIC F, TOLIAS G, CHUM O. Fine-tuning CNN image retrieval with no human annotation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(7): 1655-1668. |
| [19] | XU Tianxing, GUO Yuanchen, LI Zhiqiang, et al. TransLoc3D: point cloud based large-scale place recognition using adaptive receptive fields[J]. Communications in Information and Systems, 2023, 23(1): 57-83. |
| [20] | FAN Z, SONG Z, LIU H, et al. SVT-Net: super light-weight sparse voxel transformer for large scale place recognition[J]. AAAI Conference on Artificial Intelligence. 2022, 36(1), 551-560. |
| [21] | TIAN Gengxuan, ZHAO Junqiao, CAI Yingfeng, et al. VNI-Net: vector neurons-based rotation-invariant descriptor for LiDAR place recognition[EB/OL]. [2023-10-15]. https://arxiv.org/abs/2308.12870v1. |
| [22] | FAN Zhaoxin, SONG Zhenbo, LIU Hongyan, et al. SVT-net: super light-weight sparse voxel transformer for large scale place recognition[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(1): 551-560. |
| [23] | XIA Yan, XU Yusheng, LI Shuang, et al. SOE-net: a self-attention and orientation encoding network for point cloud based place recognition[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. |
| [24] | MADDERN W, PASCOE G, LINEGAR C, et al. 1 year, 1000 km: the Oxford RobotCar dataset[J]. The International Journal of Robotics Research, 2017, 36(1): 3-15. |
| [25] | KIM G, PARK Y S, CHO Y, et al. MulRan: multimodal range dataset for urban place recognition[C]//Proceedings of 2020 IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020. |
| [26] | LAZANYI K. Are we ready for self-driving cars-a case of principal-agent theory[C]//Proceedings of 2018 IEEE International Symposium on Applied Computational Intelligence and Informatics. Timisoara: IEEE, 2018. |
| [27] | HUI Le, YANG Hang, CHENG Mingmei, et al. Pyramid point cloud transformer for large-scale place recognition[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021. |
| [28] | ZHANG Z, CHEN G, SHU M, et al. LWR-Net: robust and lightweight place recognition network for noisy and low-density point clouds[J]. Sensors (Basel, Switzerland), 2023, 23(21): 8664. |
| [29] | KOMOROWSKI J, WYSOCZANSKA M, TRZCINSKI T. MinkLoc++: LiDAR and monocular image fusion for place recognition[C]//Proceedings of 2021 International Joint Conference on Neural Networks. Shenzhen: IEEE, 2021. |
| [30] | ZHANG W, QI J, WAN P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing. 2016, 8(6), 501. |
| [1] | Yan SHI, Da WANG, Min DENG, Xuexi YANG. Spatio-temporal anomaly detection: connotation transformation and implementation path from data-driven to knowledge-driven modeling [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1493-1504. |
| [2] | Xin YAN, Li SHEN, Junjie PAN, Yanshuai DAI, Jicheng WANG, Xiaoli ZHENG, Zhi-lin LI. Weakly supervised building change detection integrating multi-scale feature fusion and spatial refinement for high resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1586-1597. |
| [3] | Jinwei BU, Kegen YU, Qiulan WANG, Linghui LI, Xinyu LIU, Xiaoqing ZUO, Jun CHANG. Deep learning retrieval method for global ocean significant wave height by integrating spaceborne GNSS-R data and multivariable parameters [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1321-1335. |
| [4] | Liming JIANG, Yi SHAO, Zhiwei ZHOU, Peifeng MA, Teng WANG. A review of intelligent InSAR data processing: recent advancements, challenges and prospects [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1037-1056. |
| [5] | Chi GUO, Yang LIU, Yarong LUO, Jingnan LIU, Quan ZHANG. Research progress in the application of image semantic information in visual SLAM [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1057-1076. |
| [6] | Xunqiang GONG, Hongyu WANG, Tieding LU, Wei YOU. A general progressive decomposition long-term prediction network model for high-speed railway bridge pier settlement [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1113-1127. |
| [7] | Haiyan GU, Yi YANG, Haitao LI, Lijian SUN, Shaopeng DING, Shiqi LIU. Dynamic construction of high-resolution remote sensing image sample datasets and intelligent interpretation applications [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1165-1179. |
| [8] | Shaopeng DING, Xiushan LU, Rufei LIU, Yi YANG, Haiyan GU, Haitao LI. Building change detection method combining object feature guidance and multiple attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1224-1235. |
| [9] | Huimin LIU, Chenwei ZHANG, Kaiqi CHEN, Min DENG, Chong PENG. Deep learning-based spatio-temporal prediction and uncertainty assessment of urban PM2.5 distribution [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 750-760. |
| [10] | SUN Chuanmeng, WEI Yu, LI Xinyu, MA Tiehua, WU Zhibo. Intelligent detection method of image water level inversion for water level without water scale in complex scenes [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 558-568. |
| [11] | LIAO Zhaohong, ZHANG Yichen, YANG Biao, LIN Mingchun, SUN Wenbo, GAO Zhi. Monocular height estimation method of remote sensing image based on Swin Transformer-CNN and its application in highway road construction sites [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 344-352. |
| [12] | LIN Yunhao, WANG Yanjun, LI Shaochun, CAI Hengfan. A coupled DeepLab and Transformer approach for fine classification of crop cultivation types in remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 353-366. |
| [13] | Jin LIU, Shunping JI. Deep learning based multi-view dense matching with joint depth and surface normal estimation [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2391-2403. |
| [14] | Mi WANG, Xu CHENG, Jun PAN, Yingdong PI, Jing XIAO. Large models enabling intelligent photogrammetry: status, challenges and prospects [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1955-1966. |
| [15] | Piao LUO, Junkui XU, Fang WU, Yakun LÜ, Qingwen ZHUANG. A generative neural network method for road simplification [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 2007-2020. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||