Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (4): 610-619.doi: 10.11947/j.AGCS.2024.20230281
• Real-time Remote Sensing Mapping • Previous Articles Next Articles
Zhi LIU1(), Shuyuan YANG1(), Zifan YU1, Zhixi FENG1, Quanwei GAO1, Min WANG2
Received:
2023-07-24
Revised:
2024-03-13
Published:
2024-05-13
Contact:
Shuyuan YANG
E-mail:zhiliu@stu.xidian.edu.cn;syyang@xidian.edu.cn
About author:
LIU Zhi (1989—), male, PhD, senior algorithm engineer, majors in deep learning and radar signal processing. E-mail: zhiliu@stu.xidian.edu.cn
Supported by:
CLC Number:
Zhi LIU, Shuyuan YANG, Zifan YU, Zhixi FENG, Quanwei GAO, Min WANG. Fast SAR autofocus based on convolutional neural networks[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 610-619.
Tab. 1
Performance comparison of six autofocus methods on the dataset with simulated phase errors"
方法 | 熵 | 对比度 | CPU耗时/s | GPU耗时/s |
---|---|---|---|---|
PGA-ML | 9.7982 | 5.976 8 | 1 597.15 | 3 351.76 |
PGA-LUMV | 9.796 5 | 5.983 6 | 1 617.23 | 3 555.88 |
MEA | 9.759 3 | 6.254 9 | 4 511.39 | 938.35 |
N-MEA[ | 9.761 3 | 6.248 9 | 1 469.83 | 260.06 |
VDNN-AF[ | 9.637 9 | 7.164 4 | 3 656.93 | 156.69 |
CNN-AF | 9.578 0 | 7.402 3 | 780.50 | 47.10 |
Tab. 2
Performance comparison of eight autofocus methods on the dataset with real phase errors"
方法 | 熵 | 对比度 | CPU耗时/s | GPU耗时/s |
---|---|---|---|---|
PGA-ML | 9.878 7 | 4.805 6 | 566.43 | 1 112.43 |
PGA-LUMV | 9.875 5 | 4.831 2 | 585.19 | 1 108.25 |
MEA(0.01) | 9.896 0 | 4.598 1 | 3 491.33 | 217.56 |
MEA(0.1) | 9.846 7 | 5.071 0 | 3 315.42 | 217.67 |
MEA(1) | 9.844 8 | 4.598 1 | 3 272.45 | 217.31 |
MEA(10) | 9.845 1 | 5.096 1 | 3 304.63 | 216.28 |
MEA(100) | 10.077 3 | 3.637 1 | 3 251.51 | 214.41 |
N-MEA[ | 9.836 0 | 5.212 5 | 616.77 | 38.94 |
AFnet[ | 9.852 8 | 4.993 4 | 369.67 | 17.61 |
PAFnet[ | 9.852 4 | 5.000 5 | 203.03 | 12.05 |
VDNN-AF[ | 9.637 9 | 7.164 4 | 1 315.94 | 52.40 |
CNN-AF | 9.578 0 | 7.402 3 | 186.31 | 17.07 |
[1] | 李涛, 唐新明, 高小明, 等. SAR卫星业务化地形测绘能力分析与展望[J]. 测绘学报, 2021, 50(7):891-904. DOI: 10.11947/j.AGCS.2021.20200199. |
LI Tao, TANG Xinming, GAO Xiaoming, et al. Analysis and outlook of the operational topographic surveying and mapping capability of the SAR satellites[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7):891-904. DOI: 10.11947/j.AGCS.2021.20200199. | |
[2] | 刘银中. 机载SAR 实测数据多普勒参数估计与成像算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. |
LIU Yinzhong. Research on Doppler parameter estimation and imaging algorithm of airborne SAR measured data [D]. Harbin: Harbin Industrial University, 2006. | |
[3] | 王越. 合成孔径雷达自聚焦算法研究[D]. 南京: 南京航空航天大学, 2006. |
WANG Yue. Research on autofocus algorithm of synthetic aperture radar[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006. | |
[4] | KIM J W, KIM Y D, YEO T D, et.al. Fast Fourier-domain optimization using hybrid L1-Lp-Norm for autofocus in airborne SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10):7934-7954. |
[5] | IAN G C, FRANK H C W. Digital processing of synthetic aperture radar data: algorithms and implementation[M]. Norwood: Artech House, 2005: 1-436. |
[6] | SAMCZYNSKI P, KULPA K S. Coherent mapdrift technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 48(3):1505-1517. |
[7] | CALLOWAY T, DONOHOE G. Subaperture autofocus for synthetic aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(2):617-621. |
[8] | YANG Ruliang, LI Haiying, LI Shiqiang, et al. High-resolution microwave imaging[M]. Singapore: Springer, 2018: 1-569. |
[9] | LIU Zhi, YANG Shuyuan, FENG Zhixi, et al. Fast SAR autofocus based on ensemble convolutional extreme learning machine[J]. Remote Sensing, 2021, 13(14):2683. |
[10] | LI Xi, LIU Guosui, NI Jinlin. Autofocusing of ISAR images based on entropy minimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4):1240-1252. |
[11] | CAI Jinjian, MARTORELLA M, CHANG Shaoqiang, et al. Efficient nonparametric ISAR autofocus algorithm based on contrast maximization and Newton's method[J]. IEEE Sensors Journal, 2020, 21(4):4474-4487. |
[12] | MORRISON R L, DO M N, MUNSON D C. SAR image autofocus by sharpness optimization: a theoretical study[J]. IEEE Transactions on Image Processing, 2007, 16(9):2309-2321. |
[13] | ZHANG Shuanghui, LIU Yongxiang, LI Xiang. Fast entropy minimization based autofocusing technique for ISAR imaging[J]. IEEE Transactions on Signal Processing, 2015, 63(13):3425-3434. |
[14] | ZENG Tao, WANG Rui, LI Feng. SAR image autofocus utilizing minimum-entropy criterion[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6):1552-1556. |
[15] | WAHL D E, EICHEL P H, GHIGLIA D C, et al. Phase gradient autofocus: a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and electronic systems, 1994, 30(3):827-835. |
[16] | 卿吉明, 徐浩煜, 梁兴东, 等. 一种可用于实时成像的改进PGA算法[J]. 雷达学报, 2015, 4(5):600-607. |
QING Jiming, XU Haoyu, LIANG Xingdong, et al. An improved phase gradient autofocus algorithm used in real-time processing[J]. Journal of Radars, 2015, 4(5):600-607. | |
[17] | LEE H, JUNG C S, KIM K W. Feature preserving autofocus algorithm for phase error correction of SAR images[J]. Sensors, 2021, 21(7):2370. |
[18] | 郭华东, 吴文瑾, 张珂, 等. 新型SAR对地环境观测[J]. 测绘学报, 2022, 51(6):862-872. DOI: 10.11947/j.AGCS.2022.20220098. |
GUO Huadong, WU Wenjin, ZHANG Ke, et al. New generation SAR for Earth environment observation[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6):862-872. DOI: 10.11947/j.AGCS.2022.20220098. | |
[19] | QIAO Guangkai, DAI Jingwei, WANG Kaizhi, et al. A finely focusing method of SAR using very deep neural network[C]//Proceedings of the 39th IEEE International Geoscience and Remote Sensing Symposium. Yokohama: IEEE, 2019: 2571-2574. |
[20] | LIU Zhi, YANG Shuyuan, GAO Quanwei, et al. AFnet and PAFnet: fast and accurate SAR autofocus based on deep learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022(60):1-13. |
[21] | HUO Jiawei, LI Min, LI Zhongyu, et al. Novel SAR autofocus method based on deep learning with GAN network[C]//Proceedings of 2021 CIE International Conference on Radar. Haikou: IEEE, 2021: 800-803. |
[22] | WEI Pu. Deep learning algorithm for SAR autofocus[C]//Proceedings of 2021 General assembly and scientific symposium of the international union of radio science. Rome: IEEE, 2021: 1-4. |
[23] | AHMED A E A, LI Zhenfang. Improved phase gradient autofocus algorithm based on segments of variable lengths and minimum-entropy phase correction[J]. IET Radar, Sonar & Navigation, 2015, 9(4):467-479. |
[24] | LI Y, O'YOUNG S. Kalman filter disciplined phase gradient autofocus for stripmap SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9):6298-6308. |
[25] | 温雪娇, 仇晓兰, 尤红建, 等. 高分辨率星载SAR起伏运动目标精细聚焦与参数估计方法[J]. 雷达学报, 2017, 6(2):213-220. DOI: 10.12000/JR17005. |
WEN Xuejiao, QIU Xiaolan, YOU Hongjian, et al. Focusing and parameter estimation of fluctuating targets in high resolution spacebone SAR[J]. Journal of Radars, 2017, 6(2):213-220. DOI: 10.12000/JR17005. | |
[26] | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. |
[27] | NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning. Haifa: IEEE, 2010: 807-814. |
[28] | TAI Y, YANG J, LIU X. Image super-resolution via deep recursive residual network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 3147-3155. |
[29] | BOTTOU L. Stochastic gradient descent tricks[C]//Proceedings of 2012 Neural Networks. Berlin: Springer, 2012. |
[30] | KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//Proceedings of the 3th International Conference on Learning Representations. San Diego: [s.n.], 2015. |
[31] | LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[C]//Proceedings of the 7th International Conference on Learning Representations. Vancouver: [s.n.], 2019. |
[1] | Jichong YIN, Fang WU, Renjian ZHAI, Yue QIU, Xianyong GONG, Ruixing XING. Two-stream boundary constraints and relativistic generation adversarial network for building contour regularization [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1444-1457. |
[2] | Liming JIANG, Yi SHAO, Zhiwei ZHOU, Peifeng MA, Teng WANG. A review of intelligent InSAR data processing: recent advancements, challenges and prospects [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1037-1056. |
[3] | Canghai ZHOU, Zhen TIAN, Zhen SHI, Hayinaer TUOKAN. The characteristic of the Yadong-Gulu faults motion constraints by InSAR timeseries and GNSS observations [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(5): 933-945. |
[4] | Jun ZHU, Wei PENG, Haiqiang FU, Man OU, Shancheng LEI, Shiping ZHANG. Large-scale TanDEM-X InSAR sub-canopy topography inversion under insufficient observation information [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(5): 959-966. |
[5] | Yandong GAO, Yikun JIA, Shijin LI, Yu CHEN, Huaizhan LI, Nanshan ZHENG, Shubi ZHANG. The improved max-flow/min-cut weight algorithm for InSAR phase unwrapping [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 644-652. |
[6] | Qihao HUANG, Guowang JIN, Xin XIONG, Limei WANG, Jiahao LI. Lightweight SAR target detection based on channel pruning and know-ledge distillation [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 712-723. |
[7] | HE Yi, YANG Wang, ZHU Qing. An InSAR phase unwrapping method based on R2AU-Net [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 435-449. |
[8] | XIANG Deliang, DING Huaiyue, GUAN Dongdong, CHENG Jianda, SUN Xiaokun. PolSAR image registration combining polarization whitening filtering and SimSD-CapsuleNet [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 450-462. |
[9] | WANG Yuan, XU Huaping, LI Chunsheng, ZENG Guobing, LIU Aifang, GE Shiqi. Analysis of interferometric mapping accuracy for spaceborne distributed SAR dual-frequency alternative bistatic mode [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 463-472. |
[10] | YUE Jiawei, HUANG Qihuan, LIU Hui, MA Zhangfeng. A multi-baseline phase unwrapping method based on a discrete optimization framework [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 473-481. |
[11] | GAO Xianwen, JIN Taoyong, LI Jiancheng. An improved retracker considering spatial and temporal characteristics of inland water level changes for SAR altimetry [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 217-230. |
[12] | ZHAI Zhenhe, SUN Zhongmiao, GUAN Bin, MA Jian, LI Duan. An estimation method of seabed topography based on Gauss surface function using ocean gravity data [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 231-238. |
[13] | LIAO Zhaohong, ZHANG Yichen, YANG Biao, LIN Mingchun, SUN Wenbo, GAO Zhi. Monocular height estimation method of remote sensing image based on Swin Transformer-CNN and its application in highway road construction sites [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 344-352. |
[14] | LIN Dongfang, YAO Yibin, ZHENG Dunyong, LIAO Mengguang, XIE Jian. Regularization parameter determination method based on MSE relative variation rule and its application in PolInSAR surveying inversion [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1480-1491. |
[15] | DU Qian, XIE Weiying. Adversarial autoencoder for hyperspectral anomaly detection [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1105-1114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||