[1] 姜丽光, 刘俊, 张星星. 基于卫星雷达测高技术的湖库动态监测理论、方法和研究进展[J]. 遥感学报, 2022, 26(1):104-114. JIANG Liguang, LIU Jun, ZHANG Xingxing. Monitoring lakes and reservoirs using satellite radar altimetry:theory, methods, and progresses[J]. National Remote Sensing Bulletin, 2022, 26(1):104-114. [2] 高贤文, 金涛勇, 黄海兰. 合成孔径雷达高度计波形重跟踪算法的近岸精度分析[J]. 大地测量与地球动力学, 2021, 41(1):56-61. GAO Xianwen, JIN Taoyong, HUANG Hailan. Analysis on the accuracy of waveform retracking for the coastal synthetic aperture radar altimeter data[J]. Journal of Geodesy and Geodynamics, 2021, 41(1):56-61. [3] MARTIN T V, ZWALLY H J, BRENNER A C, et al. Analysis and retracking of continental ice sheet radar altimeter waveforms[J]. Journal of Geophysical Research:Oceans, 1983, 88(C3):1608-1616. [4] WINGHAM D J, RAPLEY C G, GRIFFITHS H. New techniques in satellite altimeter tracking system[C]//Proceedings of 1986 International Geoscience and Remote Sensing Symposium (IGARSS). Zurich:[s.n.]. 1986:1339-1344. [5] BAMBER J L. Ice sheet altimeter processing scheme[J]. International Journal of Remote Sensing, 1994, 15(4):925-938. [6] DAVIS C H. Growth of the Greenland ice sheet:a performance assessment of altimeter retracking algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(5):1108-1116. [7] DAVIS C H. A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite radar altimeters[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(4):974-979. [8] HWANG C, GUO Jinyun, DENG Xiaoli, et al. Coastal gravity anomalies from retracked geosat/GM altimetry:improvement, limitation and the role of airborne gravity data[J]. Journal of Geodesy, 2006, 80(4):204-216. [9] 高永刚. 利用卫星测高进行陆地湖泊水位变化监测[D]. 南京:河海大学, 2006. GAO Yonggang. Lake level variations from satellite altimetry[D].Nanjing:Hohai University, 2006. [10] LEE H, SHUM C K, YI Yuchan, et al. Laurentia crustal motion observed using TOPEX/POSEIDON radar altimetry over land[J]. Journal of Geodynamics, 2008, 46:182-193. [11] BAO Lifeng, LU Yang, WANG Yong. Improved retracking algorithm for oceanic altimeter waveforms[J]. Progress in Natural Science, 2009, 19(2):195-203. [12] 杨元德. 应用卫星测高技术确定南极海域重力场研究[D]. 武汉:武汉大学, 2010. YANG Yuande. The determination of marine gravity anomalies over Antarctic Oceans from satellite altimetry[D].Wuhan:Wuhan University, 2010. [13] VILLADSEN H, DENG Xiaoli, ANDERSEN O B, et al. Improved inland water levels from SAR altimetry using novel empirical and physical retrackers[J]. Journal of Hydrology, 2016, 537:234-247. [14] JIANG Liguang, NIELSEN K, DINARDO S, et al. Evaluation of Sentinel-3 SRAL SAR altimetry over Chinese Rivers[J]. Remote Sensing of Environment, 2020, 237:111546. [15] 陈嘉明. 新型雷达高度计波形数据处理方法及湖泊应用研究[D]. 北京:中国科学院大学(中国科学院空天信息创新研究院), 2021. CHEN Jiaming. Waveform processing techniques and applications for new satellite radar altimetry over lake level[D].Beijing:Aerospace Information Research Institute, Chinese Academy of Sciences, 2021. [16] 杨兴超, 郭斌, 邢文雪, 等. Sentinel-3测高数据在湖库区域的波形重跟踪方法:以东平湖和峡山水库为例[J]. 地球物理学报, 2023, 66(3):986-996. YANG Xingchao, GUO Bin, XING Wenxue, et al. Waveform retracking method of Sentinel-3 altimetry data in lake and reservoir areas-taking Dongping Lake and Xiashan Reservoir as examples[J]. Chinese Journal of Geophysics, 2023, 66(3):986-996. [17] FERNANDES M, LÁZARO C, NUNES A, et al. Atmospheric corrections for altimetry studies over inland water[J]. Remote Sensing, 2014, 6(6):4952-4997. [18] HELM V, HUMBERT A, MILLER H. Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2[J]. The Cryosphere, 2014, 8(4):1539-1559. [19] YANG Jungang, ZHANG Jie, CUI Wei, et al. Primary analysis of oceanic mesoscale eddies observation abilities by Sentinel-3A SRAL[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1):56-62. [20] 孙中苗, 管斌, 翟振和, 等. 海洋卫星测高及其反演全球海洋重力场和海底地形模型研究进展[J]. 测绘学报, 2022, 51(6):923-934. DOI:10.11947/j.AGCS.2022.20220069. SUN Zhongmiao, GUAN Bin, ZHAI Zhenhe, et al. Research progress of ocean satellite altimetry and its recovery of global marine gravity field and seafloor topography model[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6):923-934.DOI:10.11947/j.AGCS.2022.20220069. [21] 类延斌.青藏高原湖泊水位观测(2010-2017)[DB/OL].时空三极环境大数据平台. (2022-04-18)[2023-07-01].http://60.245.210.47/zh-hans/data/c9cc5277-e03a-4045-a317-e934ea681435/. LEI Yanbin. The water level observation of lakes on the Tibetan Plateau (2010-2017). [DB/OL].A Big Earth Data Platform for Three Poles. (2022-04-18)[2023-07-01].http://60.245.210.47/zh-hans/data/c9cc5277-e03a-4045-a317-e934ea681435/. [22] LEI Yanbin, YAO Tandong, YANG Kun, et al. Lake seasonality across the Tibetan Plateau and their varying relationship with regional mass changes and local hydrology[J]. Geophysical Research Letters, 2017, 44(2):892-900. [23] 类延斌. 青藏高原西部湖泊水位数据(2016-2021)[DB/OL]. 国家青藏高原科学数据中心. (2022-11-21)[2023-07-01].https://data.tpdc.ac.cn/zh-hans/data/b4d89e31-4e07-426e-a801-b6627fbc03ad/. LEI Yanbin. In-situ observations of lake level on the western Tibetan Plateau (2016-2021). [DB/OL].National Tibetan Plateau Data Center. (2022-11-21)[2023-07-01].https://data.tpdc.ac.cn/zh-hans/data/b4d89e31-4e07-426e-a801-b6627fbc03ad/. [24] LEI Y B, YANG K, IMMERZEEL, et al. Critical role of groundwater inflow in Sustaining Lake Water Balance on the Western Tibetan Plateau[J/OL].[2022-11-02]. https://doi.org/10.1029/2022gl099268. [25] XUE Hui, LIAO Jingjuan, ZHAO Lifei. A modified empirical retracker for lake level estimation using Cryosat-2 SAR in data[J]. Water, 2018, 10(11):1584. [26] ZHOU Shiqiao. A note on the lake level variations of Nam Co, south-central Tibetan Plateau from 2005 to 2019[J]. Sciences in Cold and Arid Regions, 2021, 12:430-435. [27] AUBLANC J. Sentinel-3 SRAL/MWR Land User Handbook.[DB/OL].ESA. (2022-12-05)[2023-07-01].https://sentinel.esa.int/documents/247904/4871083/Sentinel-3+SRAL+Land+User+Handbook+V1.1.pdf. [28] HUANG Qi, LONG Di, DU Mingda, et al. An improved approach to monitoring Brahmaputra River water levels using retracked altimetry data[J]. Remote Sensing of Environment, 2018, 211:112-128. |