[1] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10):1717-1733.DOI:10.11947/j.AGCS.2017.20170350. ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733. DOI:10.11947/j.AGCS.2017.20170350. [2] LI Zhenhong, YU Chen, XIAO Ruya, et al. Entering a new era of InSAR:advanced techniques and emerging applications[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1):1-4. [3] 杨旺, 何毅, 张立峰, 等. 甘肃金川矿区地表三维形变InSAR监测[J]. 自然资源遥感, 2022, 34(1):177-188. YANG Wang, HE Yi, ZHANG Lifeng, et al. InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu province[J]. Remote Sensing for Natural Resources, 2022, 34(1):177-188. [4] 张自文. 基于深度学习区域分割的InSAR相位解缠技术研究[D]. 成都:电子科技大学, 2021. ZHANG Ziwen. Research on InSAR phase unwrapping via deep learning based region segmentation[D].Chengdu:University of Electronic Science and Technology of China, 2021. [5] 谢先明, 孙玉铮, 梁小星, 等. 相位解缠的CKF局部多项式系数递推估计法[J]. 测绘学报, 2020, 49(8):1023-1031.DOI:10.11947/j.AGCS.2020.20190385. XIE Xianming, SUN Yuzheng, LIANG Xiaoxing, et al. Recursive estimation method of cubature Kalman filtering local polynomial coefficients for phase unwrapping[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(8):1023-1031. DOI:10.11947/j.AGCS.2020.20190385. [6] GOLDSTEIN R M, ZEBKER H A, WERNER C L. Satellite radar interferometry:two-dimensional phase unwrapping[J]. Radio Science, 1988, 23(4):713-720. [7] YU Hanwen, LAN Yang, YUAN Zhihui, et al. Phase unwrapping in InSAR:a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(1):40-58. [8] XU Wei,CHANG E C, KWOH L K, et al. Phase-unwrapping of SAR interferogram with multi-frequency or multi-baseline[C]//Proceedings of 1994 IEEE International Geoscience and Remote Sensing Symposium. Pasadena:IEEE, 2003:730-732. [9] 高延东. 面向高精度DEM的InSAR关键处理技术研究[D]. 徐州:中国矿业大学, 2019. GAO Yandong. Research on key processing technology of InSAR for high precision DEM[D].Xuzhou:China University of Mining and Technology, 2019. [10] 钱进. 顾及地形因素的L1范数相位解缠方法研究[D]. 徐州:中国矿业大学, 2021. QIAN Jin. Research on the L1 norm phase unwrapping considering terrain factors[D].Xuzhou:China University of Mining and Technology, 2021. [11] 温中原. 基于网络流与枝切法的InSAR高噪声区域相位解缠[D]. 桂林:桂林电子科技大学, 2022. WEN Zhongyuan. Phase unwrapping in high-noise regions of InSAR based on network flow and branch cut method[D].Guilin:Guilin University of Electronic Technology, 2022. [12] SPOORTHI G E, SAI G R K, GORTHI S. PhaseNet 2.0:phase unwrapping of noisy data based on deep learning approach[J]. IEEE Transactions on Image Processing, 2020, 29:4862-4872. [13] ZHOU Lifan, YU Hanwen, LAN Yang. Deep convolutional neural network-based robust phase gradient estimation for two-dimensional phase unwrapping using SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7):4653-4665. [14] ZHOU Lifan, YU Hanwen, LAN Yang, et al. Artificial intelligence in interferometric synthetic aperture radar phase unwrapping:a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(2):10-28. [15] SARA U, AKTER M, UDDIN M S. Image quality assessment through FSIM, SSIM, MSE and PSNR-a comparative study[J]. Journal of Computer and Communications, 2019, 7(3):8-18. [16] CHANNAPPAYYA S S, BOVIK A C, JR H R W. Rate bounds on SSIM index of quantized images[J]. IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society, 2008, 17(9):1624-1639. [17] 汪洋. 高效高精度合成孔径雷达干涉相位滤波算法研究[D]. 长沙:国防科学技术大学, 2016. WANG Yang. Study on high-efficiency and high-precision filtering methods for synthetic aperture radar interferometric phase images[D].Changsha:National University of Defense Technology, 2016. [18] FANG Deng. The study of terrain simulation based on fractal[J]. WSEAS Transactions on Computers, 2009, 8(1):133-142. [19] FALK T, MAI D, BENSCH R, et al. U-Net:deep learning for cell counting, detection, and morphometry[J]. Nature Methods, 2019, 16:67-70. [20] ZUO Qiang, CHEN Songyu, WANG Zhifang. R2AU-net:attention recurrent residual convolutional neural network for multimodal medical image segmentation[J]. Security and Communication Networks, 2021:6625688. [21] ZHENG Tong, LEI Peng, WANG Jun. A hybrid features based detection method for inshore ship targets in SAR imagery[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(1):95-107. [22] GARBIN C, ZHUXingquan, MARQUES O. Dropout vs. batch normalization:an empirical study of their impact to deep learning[J]. Multimedia Tools and Applications, 2020, 79(19):12777-12815. [23] ZHANG Jianxin, JIANG Zongkang, DONG Jing, et al. Attention gate ResU-net for automatic MRI brain tumor segmentation[J]. IEEE Access, 2020, 8:58533-58545. [24] CHEN C W, ZEBKER H A. Phase unwrapping for large SAR interferograms:statistical segmentation and generalized network models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8):1709-1719. [25] DELEDALLEC A, DENIS L, TUPIN F. NL-InSAR:nonlocal interferogram estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(4):1441-1452. [26] ZHANG Wenting, ZHU Wu, TIAN Xudong, et al. Improved DEM reconstruction method based on multibaseline InSAR[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19:4011505. [27] TANG, Xinming, LI Tao, GAO Xiaoming, el al. Research on key technologies of precise InSAR surveying and mapping applications using automatic SAR imaging[J]. Journal of Geodesy and Geoinformation Science. 2019,2:27. [28] YAO Sheng, HE Yi, ZHANG Lifeng, et al. A ConvLSTM neural network model for spatiotemporal prediction of mining area surface deformation based on SBAS-InSAR monitoring data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5201722. |