Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (7): 1338-1355.doi: 10.11947/j.AGCS.2022.20220148
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
HE Xiufeng1, GAO Zhuang1, XIAO Ruya1, LUO Haibin2, JIA Dongzhen1, ZHANG Zhetao1
Received:2022-02-28
Revised:2022-05-22
Published:2022-08-13
Supported by:CLC Number:
HE Xiufeng, GAO Zhuang, XIAO Ruya, LUO Haibin, JIA Dongzhen, ZHANG Zhetao. Application and prospect of the integration of InSAR and BDS/GNSS for land surface deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1338-1355.
| [1] 殷跃平,张作辰,张开军.我国地面沉降现状及防治对策研究[J].中国地质灾害与防治学报, 2005, 16(2):1-8. YIN Yueping, ZHANG Zuochen, ZHANG Kaijun. Land subsidence and countermeasures for its prevention in China[J]. The Chinese Journal of Geological Hazard and Control, 2005, 16(2):1-8. [2] 何庆成,叶晓滨,李志明,等.我国地面沉降现状及防治战略设想[J].高校地质学报, 2006, 12(2):161-168. HE Qingcheng, YE Xiaobin, LI Zhiming, et al. The status and prevention strategy of land subsidence in China[J]. Geological Journal of China Universities, 2006, 12(2):161-168. [3] 白正伟,张勤,黄观文,等."轻终端+行业云"的实时北斗滑坡监测技术[J].测绘学报, 2019, 48(11):1424-1429. DOI:10.11947/j.AGCS.2019.20190167. BAI Zhengwei, ZHANG Qin, HUANG Guanwen, et al. Real-time BeiDou landslide monitoring technology of "light terminal plus industry cloud"[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11):1424-1429. DOI:10.11947/j.AGCS.2019.20190167. [4] 刘洋,许才军,温扬茂.门源Mw5.9级地震形变InSAR观测及区域断裂带深部几何形态[J].武汉大学学报(信息科学版), 2019, 44(7):1035-1042. LIU Yang, XU Caijun, WEN Yangmao. InSAR observation of Menyuan Mw5.9 earthquake deformation and deep geometry of regional fault zone[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):1035-1042. [5] SHI Guoqiang, MA Peifeng, HU Xie, et al. Surface response and subsurface features during the restriction of groundwater exploitation in Suzhou (China) inferred from decadal SAR interferometry[J]. Remote Sensing of Environment, 2021, 256:112327. [6] 林珲,马培峰,王伟玺.监测城市基础设施健康的星载MT-InSAR方法介绍[J].测绘学报, 2017, 46(10):1421-1433. DOI:10.11947/j.AGCS.2017.20170339. LIN Hui, MA Peifeng, WANG Weixi. Urban infrastructure health monitoring with spaceborne multi-temporal synthetic aperture radar interferometry[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1421-1433. DOI:10.11947/j.AGCS.2017.20170339. [7] 赵超英,刘晓杰,张勤,等.甘肃黑方台黄土滑坡InSAR识别、监测与失稳模式研究[J].武汉大学学报(信息科学版), 2019, 44(7):996-1007. ZHAO Chaoying, LIU Xiaojie, ZHANG Qin, et al. Research on loess landslide identification, monitoring and failure mode with InSAR technique in Heifangtai, Gansu[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):996-1007. [8] 史绪国,张路,许强,等.黄土台塬滑坡变形的时序InSAR监测分析[J].武汉大学学报(信息科学版), 2019, 44(7):1027-1034. SHI Xuguo, ZHANG Lu, XU Qiang, et al. Monitoring slope displacements of loess terrace using time series InSAR analysis technique[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):1027-1034. [9] 杨泽发,朱建军,李志伟,等.基于单个雷达成像几何学SAR影像的矿区三维时序形变监测方法:中国, 201610546270.1[P]. 2016-12-14. YANG Zefa, ZHU Jianjun, LI Zhiwei, et al. Based on the timing of individual mines dimensional radar imaging geometry SAR image deformation monitoring methods:China, 201610546270.1[P]. 2016-12-14. [10] 陈洋,陶秋香,刘国林,等. InSAR与概率积分法联合的矿区地表沉降精细化监测方法[J].地球物理学报, 2021, 64(10):3554-3566. CHEN Yang, TAO Qiuxiang, LIU Guolin, et al. Detailed mining subsidence monitoring combined with InSAR and probability integral method[J]. Chinese Journal of Geophysics, 2021, 64(10):3554-3566. [11] 肖儒雅,何秀凤.时序InSAR水库大坝形变监测应用研究[J].武汉大学学报(信息科学版), 2019, 44(9):1334-1341. XIAO Ruya, HE Xiufeng. Deformation monitoring of reservoirs and dams using time-series InSAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9):1334-1341. [12] 朱建军,杨泽发,李志伟. InSAR矿区地表三维形变监测与预计研究进展[J].测绘学报, 2019, 48(2):135-144. DOI:10.11947/j.AGCS.2019.20180188. ZHU Jianjun, YANG Zefa, LI Zhiwei. Recent progress in retrieving and predicting mining-induced 3D displacements using InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2):135-144. DOI:10.11947/j.AGCS.2019.20180188. [13] BAMLER R, HARTL P. Synthetic aperture radar interferometry[J]. Inverse Problems, 1998, 14(4):R1-R54. [14] MASSONNET D, ROSSI M, CARMONA C, et al. The displacement field of the landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6433):138-142. [15] FERRETTI A, PRATI C, ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212. [16] BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383. [17] FERRETTI A, FUMAGALLI A, NOVALI F, et al. A new algorithm for processing interferometric data-stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470. [18] ZHAO Feng, MALLORQUI J J. Coherency matrix decomposition-based polarimetric persistent scatterer interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10):7819-7831. [19] MICHEL R, AVOUAC J P, TABOURY J. Measuring ground displacements from SAR amplitude images:application to the Landers earthquake[J]. Geophysical Research Letters, 1999, 26(7):875-878. [20] BECHOR N B D, ZEBKER H A. Measuring two-dimensional movements using a single InSAR pair[J]. Geophysical Research Letters, 2006, 33(16):L16311. [21] ZHU Xiaoxiang, MONTAZERI S, GISINGER C, et al. Geodetic SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1):18-35. [22] GRANDIN R, KLEIN E, MÉTOIS M, et al. Three-dimensional displacement field of the 2015 Mw8.3 Illapel earthquake (Chile) from across-and along-track Sentinel-1 TOPS interferometry[J]. Geophysical Research Letters, 2016, 43(6):2552-2561. [23] QIU Dongwei, WANG Laiyang, LUO Dean, et al. Landslide monitoring analysis of single-frequency BDS/GPS combined positioning with constraints on deformation characteristics[J]. Survey Review, 2019, 51(367):364-372. [24] 韩军强.高精度GNSS实时滑坡变形监测技术及环境建模分析研究[J].测绘学报, 2020, 49(3):397. DOI:10.11947/j.AGCS.2020.20190177. HAN Junqiang. Research on high precision GNSS real time landslide deformation monitoring technology and environmental modeling[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3):397. DOI:10.11947/j.AGCS.2020.20190177. [25] ZUMBERGE J F, HEFLIN M B, JEFFERSON D C, et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks[J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B3):5005-5017. [26] 张宝成,欧吉坤,袁运斌.基于精选基准消秩亏的GNSS参考网数据处理方法[J].测绘学报, 2014, 43(9):895-901. DOI:10.13485/j.cnki.11-2089.2014.0164. ZHANG Baocheng, OU Jikun, YUAN Yunbin. Method of processing GNSS reference network data with refined datum definition for rank-deficiency elimination[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9):895-901. DOI:10.13485/j.cnki.11-2089.2014.0164. [27] 段举举,沈云中. GPS/GLONASS组合静态相位相对定位算法[J].测绘学报, 2012, 41(6):825-830, 917. DUAN Juju, SHEN Yunzhong. An algorithm of combined GPS/GLONASS static relative positioning[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(6):825-830, 917. [28] TEUNISSEN P J G. The least-squares ambiguity decorrelation adjustment:a method for fast GPS integer ambiguity estimation[J]. Journal of Geodesy, 1995, 70(1-2):65-82. [29] BROWN N, GEISLER I, TROYER L. RTK rover performance using the master-auxiliary concept[J]. Journal of Global Positioning Systems, 2006, 5(1-2):135-144. [30] WVBBENA G, BAGGE A, SCHMITZ M. Network based techniques for RTK applications[C]//Proceedings of the GPS Symposium, Japan Institute of Navigation. Tokyo:[s.n.], 2001. [31] WANNINGER L. The performance of virtual reference stations in active geodetic GPS-networks under solar maximum conditions[C]//Proceedings of the 12th International Technical Meeting of the Satellite Division of the Institute of Navigation. Nashville, TN, 1999:1419-1428. [32] BOCK Y, WILLIAMS S. Integrated satellite interferometry in southern California[J]. Eos, Transactions American Geophysical Union, 1997, 78(29):293-300. [33] 许才军,王华,黄劲松. GPS与INSAR数据融合研究展望[J].武汉大学学报(信息科学版), 2003, 28(S1):58-61, 78. XU Caijun, WANG Hua, HUANG Jinsong. Prospect on the integration of GPS and INSAR data[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1):58-61, 78. [34] 许才军,何平,温扬茂,等. InSAR技术及应用研究进展[J].测绘地理信息, 2015, 40(2):1-9. XU Caijun, HE Ping, WEN Yangmao, et al. Recent advances InSAR interferometry and its applications[J]. Journal of Geomatics, 2015, 40(2):1-9. [35] 张小红,胡家欢,任晓东. PPP/PPP-RTK新进展与北斗/GNSS PPP定位性能比较[J].测绘学报, 2020, 49(9):1084-1100. ZHANG Xiaohong, HU Jiahuan, REN Xiaodong. New progress of PPP/PPP-RTK and positioning performance comparison of BDS/GNSS PPP[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9):1084-1100. [36] 何秀凤,高壮,肖儒雅,等.多时相Sentinel-1A InSAR的连盐高铁沉降监测分析[J].测绘学报, 2021, 50(5):600-611. HE Xiufeng, GAO Zhuang, XIAO Ruya, et al. Monitoring and analysis of subsidence along Lian-Yan railway using multi-temporal Sentinel-1A InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5):600-611. [37] MASSONNET D, FEIGL K, ROSSI M, et al. Radar interferometric mapping of deformation in the year after the Landers earthquake[J]. Nature, 1994, 369(6477):227-230. [38] ZEBKER H A, ROSEN P A, HENSLEY S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps[J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B4):7547-7563. [39] LI Zhenhong, FIELDING E J, CROSS P, et al. Interferometric synthetic aperture radar atmospheric correction:GPS topography-dependent turbulence model[J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B2):B02404. [40] 宋小刚,李德仁,单新建,等.基于GPS和MODIS的ENVISAT ASAR数据干涉测量中大气改正方法研究[J].地球物理学报, 2009, 52(6):1457-1464. SONG Xiaogang, LI Deren, SHAN Xinjian, et al. Correction of atmospheric effect in ASAR interferogram using GPS and MODIS Data[J]. Chinese Journal of Geophysics, 2009, 52(6):1457-1464. [41] YU Chen, PENNA N T, LI Zhenhong. Generation of real-time mode high-resolution water vapor fields from GPS observations[J]. Journal of Geophysical Research:Atmospheres, 2017, 122(3):2008-2025. [42] YU Chen, LI Zhenhong, PENNA N T. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model[J]. Remote Sensing of Environment, 2018, 204:109-121. [43] CAO Yunmeng, LI Zhiwei, DUAN Meng, et al. High-resolution water vapor maps obtained by merging interferometric synthetic aperture radar and GPS measurements[J]. Journal of Geophysical Research:Atmospheres, 2021, 126(1):e2020JD033430. [44] GUDMUNDSSON S, CARSTENSEN J M, SIGMUNDSSON F. Unwrapping ground displacement signals in satellite radar interferograms with aid of GPS data and MRF regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8):1743-1754. [45] 罗海滨,何秀凤. GPS控制点辅助InSAR相位解缠算法研究[J].武汉大学学报(信息科学版), 2017, 42(5):630-636. LUO Haibin, HE Xiufeng. InSAR phase unwrapping algorithms with the aid of GPS control points[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5):630-636. [46] YU Hanwen, HU Xie. Knowledge-aided InSAR phase unwrapping approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5209508. DOI:10.1109/TGRS.2021.3081039. [47] GUDMUNDSSON S, SIGMUNDSSON F, CARSTENSEN J M. Three-dimensional surface motion maps estimated from combined interferometric synthetic aperture radar and GPS data[J]. Journal of Geophysical Research:Solid Earth, 2002, 107(B10):2250. [48] SAMSONOV S, TIAMPO K, RUNDLE J, et al. Application of DInSAR-GPS optimization for derivation of fine-scale surface motion maps of southern California[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(2):512-521. [49] 罗海滨,何秀凤,刘焱雄.利用DInSAR和GPS综合方法估计地表3维形变速率[J].测绘学报, 2008, 37(2):168-171. LUO Haibin, HE Xiufeng, LIU Yanxiong. Estimation of three-dimensional surface motion velocities using integration of DInSAR and GPS[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(2):168-171. [50] 胡俊,李志伟,朱建军,等.基于BFGS法融合InSAR和GPS技术监测地表三维形变[J].地球物理学报, 2013, 56(1):117-126. HU Jun, LI Zhiwei, ZHU Jianjun, et al. Measuring three-dimensional surface displacements from combined InSAR and GPS data based on BFGS method[J]. Chinese Journal of Geophysics, 2013, 56(1):117-126. [51] 王霞迎,张菊清,张勤,等.升降轨InSAR与GPS数据集成反演西安形变场[J].测绘学报, 2016, 45(7):810-817. DOI:10.11947/j.AGCS.2016.20150485. WANG Xiaying, ZHANG Juqing, ZHANG Qin, et al. Inferring multi-dimensional deformation filed in Xi'an by combining InSAR of ascending and descending orbits with GPS data[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(7):810-817. DOI:10.11947/j.AGCS.2016.20150485. [52] SHI Guoqiang, HE Xiufeng, XIAO Ruya. Acquiring three-dimensional deformation of Kilauea's South Flank From GPS and DInSAR integration based on the ant colony optimization[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12):2506-2510. [53] 汪友军,胡俊,刘计洪,等.融合InSAR和GNSS的三维形变监测:利用方差分量估计的改进SISTEM方法[J].武汉大学学报(信息科学版), 2021, 46(10):1598-1608. WANG Youjun, HU Jun, LIU Jihong, et al. Measurements of three-dimensional deformations by integrating InSAR and GNSS:An improved SISTEM method based on variance component estimation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1598-1608. [54] 伍吉仓,宋鑫友,胡凤鸣,等.联合GNSS和InSAR观测位移反演2008年汶川大地震断层位错模型参数[J].中国地震, 2020, 36(4):767-779. WU Jicang, SONG Xinyou, HU Fengming, et al. Fault slip distribution of 2008 Wenchuan earthquake by jointed coseismic displacements from GPS and InSAR[J]. Earthquake Research in China, 2020, 36(4):767-779. [55] CASTELLAZZI P, MARTEL R, GALLOWAY D L, et al. Assessing groundwater depletion and dynamics using GRACE and InSAR:Potential and limitations[J]. Groundwater, 2016, 54(6):768-780. [56] WANG Jiahui, LU Zhong, GREGG P M. Inflation of Okmok volcano during 2008-2020 from PS analyses and source inversion with finite element models[J]. Journal of Geophysical Research:Solid Earth, 2021, 126(10):e2021JB022420. [57] DEL SOLDATO M, CONFUORTO P, BIANCHINI S, et al. Review of works combining GNSS and InSAR in Europe[J]. Remote Sensing, 2021, 13(9):1684. [58] BLEWITT G. An automatic editing algorithm for GPS data[J]. Geophysical Research Letters, 1990, 17(3):199-202. [59] 李金龙,杨元喜,徐君毅,等.基于伪距相位组合实时探测与修复GNSS三频非差观测数据周跳[J].测绘学报, 2011, 40(6):717-722, 729. LI Jinlong, YANG Yuanxi, XU Junyi, et al. Real-time cycle-slip detection and repair based on code-phase combinations for GNSS triple-frequency un-differenced observations[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(6):717-722, 729. [60] 刘柳,吕志伟,于晓东,等. GNSS三频周跳探测与修复算法[J].测绘学报, 2017, 46(4):453-459. DOI:10.11947/j.AGCS.2017.20160532. LIU Liu, LV Zhiwei, YU Xiaodong, et al. Real-time cycle-slip detection and repair algorithm of GNSS triple-frequency observations[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(4):453-459. DOI:10.11947/j.AGCS.2017.20160532. [61] 张晨晰,党亚民,薛树强,等. BDS三频GIF组合非显著周跳探测与修复[J].测绘学报, 2018, 47(S0):38-44. DOI:10.11947/j.AGCS.2018.20180314. ZHANG Chenxi, DANG Yamin, XUE Shuqiang, et al. Detection and repair of the non-significant cycle slip in BDS triple-frequencies GIF combination[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(S0):38-44. DOI:10.11947/j.AGCS.2018.20180314. [62] LI Bofeng, QIN Yanan, LIU Tianxia. Geometry-based cycle slip and data gap repair for multi-GNSS and multi-frequency observations[J]. Journal of Geodesy, 2019, 93(3):399-417. [63] ZHANG Wenhao, WANG Jinglin. A real-time cycle slip repair method using the multi-epoch geometry-based model[J]. GPS Solutions, 2021, 25(2):60. [64] 徐天扬,章浙涛,何秀凤,等.一种适用于单频GNSS数据的多周跳探测与修复方法[J/OL].武汉大学学报(信息科学版):1-17[2021-11-20].http://kns.cnki.net/kcms/detail/42.1676.TN.20211105.1147.005.html. XU Tianyang, ZHANG Zhetao, HE Xiufeng, et al. A new multi-cycle slips detection and repair method for a single-frequency GNSS receive[J/OL]. Geomatics and Information Science of Wuhan University:1-17[2021-11-20].http://kns.cnki.net/kcms/detail/42.1676.TN.20211105.1147.005.html. [65] TEUNISSEN P J G. Distributional theory for the DIA method[J]. Journal of Geodesy, 2018, 92(1):59-80. [66] 杨元喜,宋力杰,徐天河.大地测量相关观测抗差估计理论[J].测绘学报, 2002, 31(2):95-99. YANG Yuanxi, SONG Lijie, XU Tianhe. Robust parameter estimation for geodetic correlated observations[J]. Acta Geodaetica et Cartographica Sinica, 2002, 31(2):95-99. [67] 章浙涛. GNSS非模型化误差处理理论与方法[J].测绘学报, 2020, 49(7):936. DOI:10.11947/j.AGCS.2020.20190345. ZHANG Zhetao. Theory and method for processing the GNSS unmodeled errors[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7):936. DOI:10.11947/j.AGCS.2020.20190345. [68] SINGLETON A, LI Z, HOEY T, et al. Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain[J]. Remote Sensing of Environment, 2014, 147:133-144. [69] ANSARI H, DE ZAN F, PARIZZI A. Study of systematic bias in measuring surface deformation with SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(2):1285-1301. [70] 蒋弥,丁晓利,李志伟.时序InSAR同质样本选取算法研究[J].地球物理学报, 2018, 61(12):4767-4776. JIANG Mi, DING Xiaoli, LI Zhiwei. Homogeneous pixel selection algorithm for multitemporal InSAR[J]. Chinese Journal of Geophysics, 2018, 61(12):4767-4776. [71] ANSARI H, DE ZAN F, BAMLER R. Efficient phase estimation for interferogram stacks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7):4109-4125. [72] 李振洪,宋闯,余琛,等.卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J].武汉大学学报(信息科学版), 2019, 44(7):967-979. LI Zhenhong, SONG Chuang, YU Chen, et al. Application of satellite radar remote sensing to landslide detection and monitoring:Challenges and solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):967-979. [73] 许文斌,李志伟,丁晓利,等.利用MERIS水汽数据改正ASAR干涉图中的大气影响[J].地球物理学报, 2010, 53(5):1073-1084. XU Wenbin, LI Zhiwei, DING Xiaoli, et al. Correcting atmospheric effects in ASAR interferogram with MERIS integrated water vapor data[J]. Chinese Journal of Geophysics, 2010, 53(5):1073-1084. [74] XIONG Siting, ZENG Qiming, JIAO Jian, et al. Improvement of PS-InSAR atmospheric phase estimation by using WRF model[C]//2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City, QC, Canada:IEEE, 2014:2225-2228. [75] JOLIVET R, AGRAM P S, LIN N Y, et al. Improving InSAR geodesy using global atmospheric models[J]. Journal of Geophysical Research:Solid Earth, 2014, 119(3):2324-2341. [76] MASSONNET D, FEIGL K L. Discrimination of geophysical phenomena in satellite radar interferograms[J]. Geophysical Research Letters, 1995, 22(12):1537-1540. [77] SANDWELL D T, SICHOIX L. Topographic phase recovery from stacked ERS interferometry and a low-resolution digital elevation model[J]. Journal of Geophysical Research:Solid Earth, 2000, 105(B12):28211-28222. [78] TYMOFYEYEVA E, FIALKO Y. Mitigation of atmospheric phase delays in InSAR data, with application to the eastern California shear zone[J]. Journal of Geophysical Research:Solid Earth, 2015, 120(8):5952-5963. [79] LUO Heng, WANG Teng, WEI Shengji, et al. Deriving centimeter-level coseismic deformation and fault geometries of small-to-moderate earthquakes from time-series Sentinel-1 SAR images[J]. Frontiers in Earth Science, 2021, 9:636398. [80] MURRAY K D, BEKAERT D P S, LOHMAN R B. Tropospheric corrections for InSAR:Statistical assessments and applications to the Central United States and Mexico[J]. Remote Sensing of Environment, 2019, 232:111326. [81] XIAO Ruya, YU Chen, LI Zhenhong, et al. Statistical assessment metrics for InSAR atmospheric correction:Applications to generic atmospheric correction online service for InSAR (GACOS) in Eastern China[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 96:102289. [82] LI Zhiwei, DUAN Meng, CAO Yunmeng, et al. Mitigation of time-series InSAR turbulent atmospheric phase noise:A review[J]. Geodesy and Geodynamics, 2022, 13(2):93-103. [83] LAU L, CROSS P. Development and testing of a new ray-tracing approach to GNSS carrier-phase multipath modelling[J]. Journal of Geodesy, 2007, 81(11):713-732. [84] YE Shirong, CHEN Dezhong, LIU Yanyan, et al. Carrier phase multipath mitigation for BeiDou navigation satellite system[J]. GPS Solutions, 2015, 19(4):545-557. [85] 王亚伟,邹璇,唐卫明,等.削弱GNSS多路径效应的半天球格网点建模方法[J].测绘学报, 2020, 49(4):461-468. DOI:10.11947/j.AGCS.2020.20190184. WANG Yawei, ZOU Xuan, TANG Weiming, et al. A method for mitigating GNSS multipath effect based on multi-point hemispherical grid model[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4):461-468. DOI:10.11947/j.AGCS.2020.20190184. [86] COMP C J, AXELRAD P. Adaptive SNR-based carrier phase multipath mitigation technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1):264-276. [87] ZHANG Zhetao, LI Bofeng, GAO Yang, et al. Real-time carrier phase multipath detection based on dual-frequency C/N0 data[J]. GPS Solutions, 2019, 23(1):7. [88] ZHENG D W, ZHONG P, DING X L, et al. Filtering GPS time-series using a Vondrak filter and cross-validation[J]. Journal of Geodesy, 2005, 79(6-7):363-369. [89] 戴吾蛟,丁晓利,朱建军,等.基于经验模式分解的滤波去噪法及其在GPS多路径效应中的应用[J].测绘学报, 2006, 35(4):321-327. DAI Wujiao, DING Xiaoli, ZHU Jianjun, et al. EMD filter method and its application in GPS multipath[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(4):321-327. [90] SOUZA E M, MONICO J F G. Wavelet Shrinkage:High frequency multipath reduction from GPS relative positioning[J]. GPS Solutions, 2004, 8(3):152-159. [91] CHEN Liang, ALI-LÖYTTY S, PICHÉ R, et al. Mobile tracking in mixed line-of-sight/non-line-of-sight conditions:algorithm and theoretical lower bound[J]. Wireless Personal Communications, 2012, 65(4):753-771. [92] QUAN Yiming, LAU L, ROBERTS G W, et al. Convolutional neural network based multipath detection method for static and kinematic GPS high precision positioning[J]. Remote Sensing, 2018, 10(12):2052. [93] 马张烽,蒋弥,李桂华,等.空间网络对时序InSAR相位解缠的影响:以Delaunay与Dijkstra网络为例[J].测绘学报, 2022, 51(2):248-257. DOI:10.11947/j.AGCS.2022.20200469. MA Zhangfeng, JIANG Mi, LI Guihua, et al. Effects of spatial network on time series InSAR phase unwrapping:take the Delaunay and Dijkstra networks for example[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2):248-257. DOI:10.11947/j.AGCS.2022.20200469. [94] COSTANTINI M. A novel phase unwrapping method based on network programming[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3):813-821. [95] XIE Xianming, ZENG Qingning. Efficient and robust phase unwrapping algorithm based on unscented Kalman filter, the strategy of quantizing paths-guided map, and pixel classification strategy[J]. Applied Optics, 2015, 54(31):9294-9307. [96] GHIGLIA D C, ROMERO L A. Minimum LP-norm two-dimensional phase unwrapping[J]. Journal of the Optical Society of America A, 1996, 13(10):1999-2013. [97] MANUNTA M, MUHAMMAD Y. A novel algorithm based on compressive sensing to mitigate phase unwrapping errors in multitemporal DInSAR approaches[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5207520. [98] XU Xiaohua, SANDWELL D T. Toward absolute phase change recovery with InSAR:Correcting for earth tides and phase unwrapping ambiguities[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1):726-733. [99] MA Zhangfeng, JIANG Mi, KHOSHMANESH M, et al. Time series phase unwrapping based on graph theory and compressed sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5204412. DOI:10.1109/TGRS.2021.3066784. [100] LI Rui, LU Xiaolei, YUN Ye. A network-optimization-based L1-norm Sparse 2-D phase unwrapping method for persistent scatterer interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5):709-713. [101] LIU Fei, PAN Bin. A new 3-D minimum cost flow phase unwrapping algorithm based on closure phase[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3):1857-1867. [102] YU Hanwen, LAN Yang, YUAN Zhihui, et al. Phase unwrapping in InSAR:a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(1):40-58. [103] ZHOU Lifan, YU Hanwen, LAN Yang. Deep convolutional neural network-based robust phase gradient estimation for two-dimensional phase unwrapping using SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7):4653-4665. [104] WU Zhipeng, WANG Teng, WANG Yingjie, et al. Deep learning for the detection and phase unwrapping of mining-induced deformation in large-scale interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5216318. DOI:10.1109/TGRS.2021.3121907. [105] 王振杰,欧吉坤,柳林涛.单频GPS快速定位中病态问题的解法研究[J].测绘学报, 2005, 34(3):196-201. WANG Zhenjie, OU Jikun, LIU Lintao. Investigation on solutions of ill-conditioned problems in rapid positioning using single frequency GPS receivers[J]. Acta Geodaetica et Cartographica Sinica, 2005, 34(3):196-201. [106] 李博峰,沈云中.顾及基线先验信息的GPS模糊度快速解算[J].测绘学报, 2008, 37(4):423-427, 432. LI Bofeng, SHEN Yunzhong. Prior baseline information based fast GPS ambiguity resolution[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(4):423-427, 432. [107] 范龙,翟国君,柴洪洲.模糊度降相关的整数分块正交化算法[J].测绘学报, 2014, 43(8):818-826. FAN Long, ZHAI Guojun, CHAI Hongzhou. Ambiguity decorrelation with integer block orthogonal ization algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(8):818-826. [108] 卢立果,刘万科,鲁铁定,等. GNSS模糊度降相关性能的条件方差平稳度评价法[J].测绘学报, 2020, 49(8):955-964. DOI:10.11947/j.AGCS.2020.20190417. LU Liguo, LIU Wanke, LU Tieding, et al. Conditional variance stationarity evaluation method for GNSS ambiguity decorrelation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(8):955-964. DOI:10.11947/j.AGCS.2020.20190417. [109] WANG Jun, FENG Yanming. Reliability of partial ambiguity fixing with multiple GNSS constellations[J]. Journal of Geodesy, 2013, 87(1):1-14. [110] FENG Yanming. GNSS three carrier ambiguity resolution using ionosphere-reduced virtual signals[J]. Journal of Geodesy, 2008, 82(12):847-862. [111] LI Bofeng, FENG Yanming, SHEN Yunzhong. Three carrier ambiguity resolution:distance-independent performance demonstrated using semi-generated triple frequency GPS signals[J]. GPS Solutions, 2010, 14(2):177-184. [112] ZHANG Zhetao, LI Bofeng, HE Xiufeng, et al. Models, methods and assessment of four-frequency carrier ambiguity resolution for BeiDou-3 observations[J]. GPS Solutions, 2020, 24(4):96. [113] ZHANG Zhetao. Code and phase multipath mitigation by using the observation-domain parameterization and its application in five-frequency GNSS ambiguity resolution[J]. GPS Solutions, 2021, 25(4):144. DOI:10.1007/s10291-021-01179-y. [114] ZHANG Xiaohong, HE Xiyang. Performance analysis of triple-frequency ambiguity resolution with BeiDou observations[J]. GPS Solutions, 2016, 20(2):269-281. [115] 吴学雨,李明峰,董思学,等.利用基于抗差垂直向方差分量估计的GPS-InSAR数据融合方法反演三维形变场[J].测绘通报, 2021(12):38-43. DOI:10.13474/j.cnki.11-2246.2021.369. WU Xueyu, LI Mingfeng, DONG Sixue, et al. GPS-InSAR data fusion method with robust vertical variance component estimation for 3D deformation field[J]. Bulletin of Surveying and mapping, 2021(12):38-43. DOI:10.13474/j.cnki.11-2246.2021.369. [116] 刘计洪,胡俊,李志伟,等. InSAR三维同震地表形变监测——窗口优化的SM-VCE算法[J].测绘学报, 2021, 50(9):1222-1239. DOI:10.11947/j.AGCS.2021.20200610. LIU Jihong, HU Jun, LI Zhiwei, et al. Estimation of 3D coseismic deformation with InSAR:an improved SM-VCE method by window optimization[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9):1222-1239. DOI:10.11947/j.AGCS.2021.20200610. [117] GNSSer. GNSS数据处理服务与交流平台[EB/OL]. 2021-22-20.http://www.gnsser.com. GNSSer. GNSS data processing service and exchange platform[EB/OL]. 2021-22-20. http://www.gnsser.com. [118] CASU F, ELEFANTE S, IMPERATORE P, et al. SBAS-DInSAR parallel processing for deformation time-series computation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(8):3285-3296. [119] 杨元喜.综合PNT体系及其关键技术[J].测绘学报, 2016, 45(5):505-510. DOI:10.11947/j.AGCS.2016.20160127. YANG Yuanxi. Concepts of comprehensive PNT and related key technologies[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5):505-510. DOI:10.11947/j.AGCS.2016.20160127. [120] ANSARI H, DE ZAN F, BAMLER R. Sequential estimator:toward efficient InSAR time series analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10):5637-5652. [121] WANG Baohang, ZHAO Chaoying, ZHANG Qin, et al. Sequential estimation of dynamic deformation parameters for SBAS-InSAR[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(6):1017-1021. [122] 吕志平,许国昌,陈正生,等.大型GNSS观测网的并行计算[J].测绘科学技术学报, 2021, 38(1):1-8. LV Zhiping, XU Guochang, CHEN Zhengsheng, et al. Parallel resolution of huge GNSS networks[J]. Journal of Geomatics Science and Technology, 2021, 38(1):1-8. [123] AUER S, GERNHARDT S, BAMLER R. Investigations on the nature of persistent scatterers based on simulation methods[C]//Proceedings of 2011 Joint Urban Remote Sensing Event. Munich, Germany:IEEE, 2011:61-64. [124] WANG Yuanyuan, ZHU Xiaoxiang, ZEISL B, et al. Fusing meter-resolution 4D InSAR point clouds and optical images for semantic urban infrastructure monitoring[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1):14-26. |
| [1] | Zhonghe LIU, Zongchun LI, Hua HE, Yinggang GUO, Wenbin ZHAO. A strategy for selecting quasi-stable points with a high breakdown point by integrating robust S-transform with K-means clustering [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1608-1619. |
| [2] | Yarong LUO, Wentao LU, Chi GUO, Jingnan LIU. Left-handed symmetry equivariant filtering model and algorithm for GNSS/INS integrated navigation [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1389-1403. |
| [3] | Yangyi CHEN, Kai ZHENG, Xiaohong ZHANG, Mingkui WU, Pengxu WANG, Wenju FU, Kezhong LIU. GPS/Galileo/BDS overlapping frequencies multipath error analysis and modeling [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1427-1438. |
| [4] | Jianzhang LI, Haowen YAN, Weifang YANG, Xiaoning SU. GNSS pseudo trigonometric leveling method [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1170-1177. |
| [5] | Peng LI, Jianbo BAI, Zhenhong LI, Houjie WANG. Wide area coastal subsidence monitoring and driver analysis with multi tracks of TS-InSAR—a case study of Shandong province [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1178-1191. |
| [6] | Qingzhi ZHAO, Lulu CHANG, Yibin YAO, Haojie LI. A method for constructing a hydrological drought index integrated with GNSS and meteorological data [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1192-1205. |
| [7] | Qianxin WANG, Chao HU, Tong CHENG. A method for satellite ultra-rapid orbit and clock offset estimation based on the prior information of the GNSS clock parameters [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 982-994. |
| [8] | Yang SHEN, Guangyun LI, Mingjian CHEN, Linyang LI, Xingyu SHI, Wei CAI, Weifeng HAO. Assessment of GNSS ionosphere models based on FY-3 TEC in polar regions [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 995-1008. |
| [9] | Kefu WU, Haiqiang FU, Jianjun ZHU, Qijin HAN, Aichun WANG, Mingxia ZHANG, Zhiwei LI. LT-1 InSAR block adjustment considering the impact of penetration depth in forest areas [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1009-1020. |
| [10] | Shunqiang HU, Kejie CHEN, Xiaoxing HE, Hai ZHU, Tan WANG. The impact of environmental loading on nonlinear variations of 3D coordinate time series of GNSS stations in Sichuan and Yunnan region [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 805-818. |
| [11] | Wentao YANG, Fei GUO, Xiaohong ZHANG, Zhiyu ZHANG, Yifan ZHU, Zheng LI, Ziheng WU. Soil moisture and freeze-thaw map using GNSS reflectometer and SMAP radiometer for Qinghai-Xizang Plateau [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(4): 725-735. |
| [12] | Qingzhi ZHAO, Duoduo JIANG, Hongwu GUO, Zufeng LI, Chen LIU, Yibin YAO. A general method for determining the key parameters of GNSS water vapor tomography modeling [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(3): 410-421. |
| [13] | Xuexi LIU, Shouqing ZHU, Guo CHEN, Kefei ZHANG, Nanshan ZHENG, Jingxuan LIU. Consistency analysis of GNSS precise orbit and clock products based on globally unified coordinate frame [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(3): 432-447. |
| [14] | Zhaofeng DU, Guopeng LI, Zhanke LIU, Xiaming SHANG, Shengjun KANG, Xiaoqiang WANG. Comprehensive analysis of multiple monitoring methods in main subsidence areas [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(3): 481-492. |
| [15] | Yangyang LU, Huizhong ZHU, Bo LI, Jun LI, Aigong XU. PPP algorithm for multi-frequency GPS/Galileo/BDS-3 with IFCB time-varying characteristic constraints [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 233-247. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||