Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (7): 1338-1355.doi: 10.11947/j.AGCS.2022.20220148
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
HE Xiufeng1, GAO Zhuang1, XIAO Ruya1, LUO Haibin2, JIA Dongzhen1, ZHANG Zhetao1
Received:
2022-02-28
Revised:
2022-05-22
Published:
2022-08-13
Supported by:
CLC Number:
HE Xiufeng, GAO Zhuang, XIAO Ruya, LUO Haibin, JIA Dongzhen, ZHANG Zhetao. Application and prospect of the integration of InSAR and BDS/GNSS for land surface deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1338-1355.
[1] 殷跃平,张作辰,张开军.我国地面沉降现状及防治对策研究[J].中国地质灾害与防治学报, 2005, 16(2):1-8. YIN Yueping, ZHANG Zuochen, ZHANG Kaijun. Land subsidence and countermeasures for its prevention in China[J]. The Chinese Journal of Geological Hazard and Control, 2005, 16(2):1-8. [2] 何庆成,叶晓滨,李志明,等.我国地面沉降现状及防治战略设想[J].高校地质学报, 2006, 12(2):161-168. HE Qingcheng, YE Xiaobin, LI Zhiming, et al. The status and prevention strategy of land subsidence in China[J]. Geological Journal of China Universities, 2006, 12(2):161-168. [3] 白正伟,张勤,黄观文,等."轻终端+行业云"的实时北斗滑坡监测技术[J].测绘学报, 2019, 48(11):1424-1429. DOI:10.11947/j.AGCS.2019.20190167. BAI Zhengwei, ZHANG Qin, HUANG Guanwen, et al. Real-time BeiDou landslide monitoring technology of "light terminal plus industry cloud"[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11):1424-1429. DOI:10.11947/j.AGCS.2019.20190167. [4] 刘洋,许才军,温扬茂.门源Mw5.9级地震形变InSAR观测及区域断裂带深部几何形态[J].武汉大学学报(信息科学版), 2019, 44(7):1035-1042. LIU Yang, XU Caijun, WEN Yangmao. InSAR observation of Menyuan Mw5.9 earthquake deformation and deep geometry of regional fault zone[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):1035-1042. [5] SHI Guoqiang, MA Peifeng, HU Xie, et al. Surface response and subsurface features during the restriction of groundwater exploitation in Suzhou (China) inferred from decadal SAR interferometry[J]. Remote Sensing of Environment, 2021, 256:112327. [6] 林珲,马培峰,王伟玺.监测城市基础设施健康的星载MT-InSAR方法介绍[J].测绘学报, 2017, 46(10):1421-1433. DOI:10.11947/j.AGCS.2017.20170339. LIN Hui, MA Peifeng, WANG Weixi. Urban infrastructure health monitoring with spaceborne multi-temporal synthetic aperture radar interferometry[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1421-1433. DOI:10.11947/j.AGCS.2017.20170339. [7] 赵超英,刘晓杰,张勤,等.甘肃黑方台黄土滑坡InSAR识别、监测与失稳模式研究[J].武汉大学学报(信息科学版), 2019, 44(7):996-1007. ZHAO Chaoying, LIU Xiaojie, ZHANG Qin, et al. Research on loess landslide identification, monitoring and failure mode with InSAR technique in Heifangtai, Gansu[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):996-1007. [8] 史绪国,张路,许强,等.黄土台塬滑坡变形的时序InSAR监测分析[J].武汉大学学报(信息科学版), 2019, 44(7):1027-1034. SHI Xuguo, ZHANG Lu, XU Qiang, et al. Monitoring slope displacements of loess terrace using time series InSAR analysis technique[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):1027-1034. [9] 杨泽发,朱建军,李志伟,等.基于单个雷达成像几何学SAR影像的矿区三维时序形变监测方法:中国, 201610546270.1[P]. 2016-12-14. YANG Zefa, ZHU Jianjun, LI Zhiwei, et al. Based on the timing of individual mines dimensional radar imaging geometry SAR image deformation monitoring methods:China, 201610546270.1[P]. 2016-12-14. [10] 陈洋,陶秋香,刘国林,等. InSAR与概率积分法联合的矿区地表沉降精细化监测方法[J].地球物理学报, 2021, 64(10):3554-3566. CHEN Yang, TAO Qiuxiang, LIU Guolin, et al. Detailed mining subsidence monitoring combined with InSAR and probability integral method[J]. Chinese Journal of Geophysics, 2021, 64(10):3554-3566. [11] 肖儒雅,何秀凤.时序InSAR水库大坝形变监测应用研究[J].武汉大学学报(信息科学版), 2019, 44(9):1334-1341. XIAO Ruya, HE Xiufeng. Deformation monitoring of reservoirs and dams using time-series InSAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9):1334-1341. [12] 朱建军,杨泽发,李志伟. InSAR矿区地表三维形变监测与预计研究进展[J].测绘学报, 2019, 48(2):135-144. DOI:10.11947/j.AGCS.2019.20180188. ZHU Jianjun, YANG Zefa, LI Zhiwei. Recent progress in retrieving and predicting mining-induced 3D displacements using InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2):135-144. DOI:10.11947/j.AGCS.2019.20180188. [13] BAMLER R, HARTL P. Synthetic aperture radar interferometry[J]. Inverse Problems, 1998, 14(4):R1-R54. [14] MASSONNET D, ROSSI M, CARMONA C, et al. The displacement field of the landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6433):138-142. [15] FERRETTI A, PRATI C, ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212. [16] BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383. [17] FERRETTI A, FUMAGALLI A, NOVALI F, et al. A new algorithm for processing interferometric data-stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470. [18] ZHAO Feng, MALLORQUI J J. Coherency matrix decomposition-based polarimetric persistent scatterer interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10):7819-7831. [19] MICHEL R, AVOUAC J P, TABOURY J. Measuring ground displacements from SAR amplitude images:application to the Landers earthquake[J]. Geophysical Research Letters, 1999, 26(7):875-878. [20] BECHOR N B D, ZEBKER H A. Measuring two-dimensional movements using a single InSAR pair[J]. Geophysical Research Letters, 2006, 33(16):L16311. [21] ZHU Xiaoxiang, MONTAZERI S, GISINGER C, et al. Geodetic SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1):18-35. [22] GRANDIN R, KLEIN E, MÉTOIS M, et al. Three-dimensional displacement field of the 2015 Mw8.3 Illapel earthquake (Chile) from across-and along-track Sentinel-1 TOPS interferometry[J]. Geophysical Research Letters, 2016, 43(6):2552-2561. [23] QIU Dongwei, WANG Laiyang, LUO Dean, et al. Landslide monitoring analysis of single-frequency BDS/GPS combined positioning with constraints on deformation characteristics[J]. Survey Review, 2019, 51(367):364-372. [24] 韩军强.高精度GNSS实时滑坡变形监测技术及环境建模分析研究[J].测绘学报, 2020, 49(3):397. DOI:10.11947/j.AGCS.2020.20190177. HAN Junqiang. Research on high precision GNSS real time landslide deformation monitoring technology and environmental modeling[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3):397. DOI:10.11947/j.AGCS.2020.20190177. [25] ZUMBERGE J F, HEFLIN M B, JEFFERSON D C, et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks[J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B3):5005-5017. [26] 张宝成,欧吉坤,袁运斌.基于精选基准消秩亏的GNSS参考网数据处理方法[J].测绘学报, 2014, 43(9):895-901. DOI:10.13485/j.cnki.11-2089.2014.0164. ZHANG Baocheng, OU Jikun, YUAN Yunbin. Method of processing GNSS reference network data with refined datum definition for rank-deficiency elimination[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9):895-901. DOI:10.13485/j.cnki.11-2089.2014.0164. [27] 段举举,沈云中. GPS/GLONASS组合静态相位相对定位算法[J].测绘学报, 2012, 41(6):825-830, 917. DUAN Juju, SHEN Yunzhong. An algorithm of combined GPS/GLONASS static relative positioning[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(6):825-830, 917. [28] TEUNISSEN P J G. The least-squares ambiguity decorrelation adjustment:a method for fast GPS integer ambiguity estimation[J]. Journal of Geodesy, 1995, 70(1-2):65-82. [29] BROWN N, GEISLER I, TROYER L. RTK rover performance using the master-auxiliary concept[J]. Journal of Global Positioning Systems, 2006, 5(1-2):135-144. [30] WVBBENA G, BAGGE A, SCHMITZ M. Network based techniques for RTK applications[C]//Proceedings of the GPS Symposium, Japan Institute of Navigation. Tokyo:[s.n.], 2001. [31] WANNINGER L. The performance of virtual reference stations in active geodetic GPS-networks under solar maximum conditions[C]//Proceedings of the 12th International Technical Meeting of the Satellite Division of the Institute of Navigation. Nashville, TN, 1999:1419-1428. [32] BOCK Y, WILLIAMS S. Integrated satellite interferometry in southern California[J]. Eos, Transactions American Geophysical Union, 1997, 78(29):293-300. [33] 许才军,王华,黄劲松. GPS与INSAR数据融合研究展望[J].武汉大学学报(信息科学版), 2003, 28(S1):58-61, 78. XU Caijun, WANG Hua, HUANG Jinsong. Prospect on the integration of GPS and INSAR data[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1):58-61, 78. [34] 许才军,何平,温扬茂,等. InSAR技术及应用研究进展[J].测绘地理信息, 2015, 40(2):1-9. XU Caijun, HE Ping, WEN Yangmao, et al. Recent advances InSAR interferometry and its applications[J]. Journal of Geomatics, 2015, 40(2):1-9. [35] 张小红,胡家欢,任晓东. PPP/PPP-RTK新进展与北斗/GNSS PPP定位性能比较[J].测绘学报, 2020, 49(9):1084-1100. ZHANG Xiaohong, HU Jiahuan, REN Xiaodong. New progress of PPP/PPP-RTK and positioning performance comparison of BDS/GNSS PPP[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9):1084-1100. [36] 何秀凤,高壮,肖儒雅,等.多时相Sentinel-1A InSAR的连盐高铁沉降监测分析[J].测绘学报, 2021, 50(5):600-611. HE Xiufeng, GAO Zhuang, XIAO Ruya, et al. Monitoring and analysis of subsidence along Lian-Yan railway using multi-temporal Sentinel-1A InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5):600-611. [37] MASSONNET D, FEIGL K, ROSSI M, et al. Radar interferometric mapping of deformation in the year after the Landers earthquake[J]. Nature, 1994, 369(6477):227-230. [38] ZEBKER H A, ROSEN P A, HENSLEY S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps[J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B4):7547-7563. [39] LI Zhenhong, FIELDING E J, CROSS P, et al. Interferometric synthetic aperture radar atmospheric correction:GPS topography-dependent turbulence model[J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B2):B02404. [40] 宋小刚,李德仁,单新建,等.基于GPS和MODIS的ENVISAT ASAR数据干涉测量中大气改正方法研究[J].地球物理学报, 2009, 52(6):1457-1464. SONG Xiaogang, LI Deren, SHAN Xinjian, et al. Correction of atmospheric effect in ASAR interferogram using GPS and MODIS Data[J]. Chinese Journal of Geophysics, 2009, 52(6):1457-1464. [41] YU Chen, PENNA N T, LI Zhenhong. Generation of real-time mode high-resolution water vapor fields from GPS observations[J]. Journal of Geophysical Research:Atmospheres, 2017, 122(3):2008-2025. [42] YU Chen, LI Zhenhong, PENNA N T. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model[J]. Remote Sensing of Environment, 2018, 204:109-121. [43] CAO Yunmeng, LI Zhiwei, DUAN Meng, et al. High-resolution water vapor maps obtained by merging interferometric synthetic aperture radar and GPS measurements[J]. Journal of Geophysical Research:Atmospheres, 2021, 126(1):e2020JD033430. [44] GUDMUNDSSON S, CARSTENSEN J M, SIGMUNDSSON F. Unwrapping ground displacement signals in satellite radar interferograms with aid of GPS data and MRF regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8):1743-1754. [45] 罗海滨,何秀凤. GPS控制点辅助InSAR相位解缠算法研究[J].武汉大学学报(信息科学版), 2017, 42(5):630-636. LUO Haibin, HE Xiufeng. InSAR phase unwrapping algorithms with the aid of GPS control points[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5):630-636. [46] YU Hanwen, HU Xie. Knowledge-aided InSAR phase unwrapping approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5209508. DOI:10.1109/TGRS.2021.3081039. [47] GUDMUNDSSON S, SIGMUNDSSON F, CARSTENSEN J M. Three-dimensional surface motion maps estimated from combined interferometric synthetic aperture radar and GPS data[J]. Journal of Geophysical Research:Solid Earth, 2002, 107(B10):2250. [48] SAMSONOV S, TIAMPO K, RUNDLE J, et al. Application of DInSAR-GPS optimization for derivation of fine-scale surface motion maps of southern California[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(2):512-521. [49] 罗海滨,何秀凤,刘焱雄.利用DInSAR和GPS综合方法估计地表3维形变速率[J].测绘学报, 2008, 37(2):168-171. LUO Haibin, HE Xiufeng, LIU Yanxiong. Estimation of three-dimensional surface motion velocities using integration of DInSAR and GPS[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(2):168-171. [50] 胡俊,李志伟,朱建军,等.基于BFGS法融合InSAR和GPS技术监测地表三维形变[J].地球物理学报, 2013, 56(1):117-126. HU Jun, LI Zhiwei, ZHU Jianjun, et al. Measuring three-dimensional surface displacements from combined InSAR and GPS data based on BFGS method[J]. Chinese Journal of Geophysics, 2013, 56(1):117-126. [51] 王霞迎,张菊清,张勤,等.升降轨InSAR与GPS数据集成反演西安形变场[J].测绘学报, 2016, 45(7):810-817. DOI:10.11947/j.AGCS.2016.20150485. WANG Xiaying, ZHANG Juqing, ZHANG Qin, et al. Inferring multi-dimensional deformation filed in Xi'an by combining InSAR of ascending and descending orbits with GPS data[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(7):810-817. DOI:10.11947/j.AGCS.2016.20150485. [52] SHI Guoqiang, HE Xiufeng, XIAO Ruya. Acquiring three-dimensional deformation of Kilauea's South Flank From GPS and DInSAR integration based on the ant colony optimization[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12):2506-2510. [53] 汪友军,胡俊,刘计洪,等.融合InSAR和GNSS的三维形变监测:利用方差分量估计的改进SISTEM方法[J].武汉大学学报(信息科学版), 2021, 46(10):1598-1608. WANG Youjun, HU Jun, LIU Jihong, et al. Measurements of three-dimensional deformations by integrating InSAR and GNSS:An improved SISTEM method based on variance component estimation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1598-1608. [54] 伍吉仓,宋鑫友,胡凤鸣,等.联合GNSS和InSAR观测位移反演2008年汶川大地震断层位错模型参数[J].中国地震, 2020, 36(4):767-779. WU Jicang, SONG Xinyou, HU Fengming, et al. Fault slip distribution of 2008 Wenchuan earthquake by jointed coseismic displacements from GPS and InSAR[J]. Earthquake Research in China, 2020, 36(4):767-779. [55] CASTELLAZZI P, MARTEL R, GALLOWAY D L, et al. Assessing groundwater depletion and dynamics using GRACE and InSAR:Potential and limitations[J]. Groundwater, 2016, 54(6):768-780. [56] WANG Jiahui, LU Zhong, GREGG P M. Inflation of Okmok volcano during 2008-2020 from PS analyses and source inversion with finite element models[J]. Journal of Geophysical Research:Solid Earth, 2021, 126(10):e2021JB022420. [57] DEL SOLDATO M, CONFUORTO P, BIANCHINI S, et al. Review of works combining GNSS and InSAR in Europe[J]. Remote Sensing, 2021, 13(9):1684. [58] BLEWITT G. An automatic editing algorithm for GPS data[J]. Geophysical Research Letters, 1990, 17(3):199-202. [59] 李金龙,杨元喜,徐君毅,等.基于伪距相位组合实时探测与修复GNSS三频非差观测数据周跳[J].测绘学报, 2011, 40(6):717-722, 729. LI Jinlong, YANG Yuanxi, XU Junyi, et al. Real-time cycle-slip detection and repair based on code-phase combinations for GNSS triple-frequency un-differenced observations[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(6):717-722, 729. [60] 刘柳,吕志伟,于晓东,等. GNSS三频周跳探测与修复算法[J].测绘学报, 2017, 46(4):453-459. DOI:10.11947/j.AGCS.2017.20160532. LIU Liu, LV Zhiwei, YU Xiaodong, et al. Real-time cycle-slip detection and repair algorithm of GNSS triple-frequency observations[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(4):453-459. DOI:10.11947/j.AGCS.2017.20160532. [61] 张晨晰,党亚民,薛树强,等. BDS三频GIF组合非显著周跳探测与修复[J].测绘学报, 2018, 47(S0):38-44. DOI:10.11947/j.AGCS.2018.20180314. ZHANG Chenxi, DANG Yamin, XUE Shuqiang, et al. Detection and repair of the non-significant cycle slip in BDS triple-frequencies GIF combination[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(S0):38-44. DOI:10.11947/j.AGCS.2018.20180314. [62] LI Bofeng, QIN Yanan, LIU Tianxia. Geometry-based cycle slip and data gap repair for multi-GNSS and multi-frequency observations[J]. Journal of Geodesy, 2019, 93(3):399-417. [63] ZHANG Wenhao, WANG Jinglin. A real-time cycle slip repair method using the multi-epoch geometry-based model[J]. GPS Solutions, 2021, 25(2):60. [64] 徐天扬,章浙涛,何秀凤,等.一种适用于单频GNSS数据的多周跳探测与修复方法[J/OL].武汉大学学报(信息科学版):1-17[2021-11-20].http://kns.cnki.net/kcms/detail/42.1676.TN.20211105.1147.005.html. XU Tianyang, ZHANG Zhetao, HE Xiufeng, et al. A new multi-cycle slips detection and repair method for a single-frequency GNSS receive[J/OL]. Geomatics and Information Science of Wuhan University:1-17[2021-11-20].http://kns.cnki.net/kcms/detail/42.1676.TN.20211105.1147.005.html. [65] TEUNISSEN P J G. Distributional theory for the DIA method[J]. Journal of Geodesy, 2018, 92(1):59-80. [66] 杨元喜,宋力杰,徐天河.大地测量相关观测抗差估计理论[J].测绘学报, 2002, 31(2):95-99. YANG Yuanxi, SONG Lijie, XU Tianhe. Robust parameter estimation for geodetic correlated observations[J]. Acta Geodaetica et Cartographica Sinica, 2002, 31(2):95-99. [67] 章浙涛. GNSS非模型化误差处理理论与方法[J].测绘学报, 2020, 49(7):936. DOI:10.11947/j.AGCS.2020.20190345. ZHANG Zhetao. Theory and method for processing the GNSS unmodeled errors[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7):936. DOI:10.11947/j.AGCS.2020.20190345. [68] SINGLETON A, LI Z, HOEY T, et al. Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain[J]. Remote Sensing of Environment, 2014, 147:133-144. [69] ANSARI H, DE ZAN F, PARIZZI A. Study of systematic bias in measuring surface deformation with SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(2):1285-1301. [70] 蒋弥,丁晓利,李志伟.时序InSAR同质样本选取算法研究[J].地球物理学报, 2018, 61(12):4767-4776. JIANG Mi, DING Xiaoli, LI Zhiwei. Homogeneous pixel selection algorithm for multitemporal InSAR[J]. Chinese Journal of Geophysics, 2018, 61(12):4767-4776. [71] ANSARI H, DE ZAN F, BAMLER R. Efficient phase estimation for interferogram stacks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7):4109-4125. [72] 李振洪,宋闯,余琛,等.卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J].武汉大学学报(信息科学版), 2019, 44(7):967-979. LI Zhenhong, SONG Chuang, YU Chen, et al. Application of satellite radar remote sensing to landslide detection and monitoring:Challenges and solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):967-979. [73] 许文斌,李志伟,丁晓利,等.利用MERIS水汽数据改正ASAR干涉图中的大气影响[J].地球物理学报, 2010, 53(5):1073-1084. XU Wenbin, LI Zhiwei, DING Xiaoli, et al. Correcting atmospheric effects in ASAR interferogram with MERIS integrated water vapor data[J]. Chinese Journal of Geophysics, 2010, 53(5):1073-1084. [74] XIONG Siting, ZENG Qiming, JIAO Jian, et al. Improvement of PS-InSAR atmospheric phase estimation by using WRF model[C]//2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City, QC, Canada:IEEE, 2014:2225-2228. [75] JOLIVET R, AGRAM P S, LIN N Y, et al. Improving InSAR geodesy using global atmospheric models[J]. Journal of Geophysical Research:Solid Earth, 2014, 119(3):2324-2341. [76] MASSONNET D, FEIGL K L. Discrimination of geophysical phenomena in satellite radar interferograms[J]. Geophysical Research Letters, 1995, 22(12):1537-1540. [77] SANDWELL D T, SICHOIX L. Topographic phase recovery from stacked ERS interferometry and a low-resolution digital elevation model[J]. Journal of Geophysical Research:Solid Earth, 2000, 105(B12):28211-28222. [78] TYMOFYEYEVA E, FIALKO Y. Mitigation of atmospheric phase delays in InSAR data, with application to the eastern California shear zone[J]. Journal of Geophysical Research:Solid Earth, 2015, 120(8):5952-5963. [79] LUO Heng, WANG Teng, WEI Shengji, et al. Deriving centimeter-level coseismic deformation and fault geometries of small-to-moderate earthquakes from time-series Sentinel-1 SAR images[J]. Frontiers in Earth Science, 2021, 9:636398. [80] MURRAY K D, BEKAERT D P S, LOHMAN R B. Tropospheric corrections for InSAR:Statistical assessments and applications to the Central United States and Mexico[J]. Remote Sensing of Environment, 2019, 232:111326. [81] XIAO Ruya, YU Chen, LI Zhenhong, et al. Statistical assessment metrics for InSAR atmospheric correction:Applications to generic atmospheric correction online service for InSAR (GACOS) in Eastern China[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 96:102289. [82] LI Zhiwei, DUAN Meng, CAO Yunmeng, et al. Mitigation of time-series InSAR turbulent atmospheric phase noise:A review[J]. Geodesy and Geodynamics, 2022, 13(2):93-103. [83] LAU L, CROSS P. Development and testing of a new ray-tracing approach to GNSS carrier-phase multipath modelling[J]. Journal of Geodesy, 2007, 81(11):713-732. [84] YE Shirong, CHEN Dezhong, LIU Yanyan, et al. Carrier phase multipath mitigation for BeiDou navigation satellite system[J]. GPS Solutions, 2015, 19(4):545-557. [85] 王亚伟,邹璇,唐卫明,等.削弱GNSS多路径效应的半天球格网点建模方法[J].测绘学报, 2020, 49(4):461-468. DOI:10.11947/j.AGCS.2020.20190184. WANG Yawei, ZOU Xuan, TANG Weiming, et al. A method for mitigating GNSS multipath effect based on multi-point hemispherical grid model[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4):461-468. DOI:10.11947/j.AGCS.2020.20190184. [86] COMP C J, AXELRAD P. Adaptive SNR-based carrier phase multipath mitigation technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1):264-276. [87] ZHANG Zhetao, LI Bofeng, GAO Yang, et al. Real-time carrier phase multipath detection based on dual-frequency C/N0 data[J]. GPS Solutions, 2019, 23(1):7. [88] ZHENG D W, ZHONG P, DING X L, et al. Filtering GPS time-series using a Vondrak filter and cross-validation[J]. Journal of Geodesy, 2005, 79(6-7):363-369. [89] 戴吾蛟,丁晓利,朱建军,等.基于经验模式分解的滤波去噪法及其在GPS多路径效应中的应用[J].测绘学报, 2006, 35(4):321-327. DAI Wujiao, DING Xiaoli, ZHU Jianjun, et al. EMD filter method and its application in GPS multipath[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(4):321-327. [90] SOUZA E M, MONICO J F G. Wavelet Shrinkage:High frequency multipath reduction from GPS relative positioning[J]. GPS Solutions, 2004, 8(3):152-159. [91] CHEN Liang, ALI-LÖYTTY S, PICHÉ R, et al. Mobile tracking in mixed line-of-sight/non-line-of-sight conditions:algorithm and theoretical lower bound[J]. Wireless Personal Communications, 2012, 65(4):753-771. [92] QUAN Yiming, LAU L, ROBERTS G W, et al. Convolutional neural network based multipath detection method for static and kinematic GPS high precision positioning[J]. Remote Sensing, 2018, 10(12):2052. [93] 马张烽,蒋弥,李桂华,等.空间网络对时序InSAR相位解缠的影响:以Delaunay与Dijkstra网络为例[J].测绘学报, 2022, 51(2):248-257. DOI:10.11947/j.AGCS.2022.20200469. MA Zhangfeng, JIANG Mi, LI Guihua, et al. Effects of spatial network on time series InSAR phase unwrapping:take the Delaunay and Dijkstra networks for example[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2):248-257. DOI:10.11947/j.AGCS.2022.20200469. [94] COSTANTINI M. A novel phase unwrapping method based on network programming[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3):813-821. [95] XIE Xianming, ZENG Qingning. Efficient and robust phase unwrapping algorithm based on unscented Kalman filter, the strategy of quantizing paths-guided map, and pixel classification strategy[J]. Applied Optics, 2015, 54(31):9294-9307. [96] GHIGLIA D C, ROMERO L A. Minimum LP-norm two-dimensional phase unwrapping[J]. Journal of the Optical Society of America A, 1996, 13(10):1999-2013. [97] MANUNTA M, MUHAMMAD Y. A novel algorithm based on compressive sensing to mitigate phase unwrapping errors in multitemporal DInSAR approaches[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5207520. [98] XU Xiaohua, SANDWELL D T. Toward absolute phase change recovery with InSAR:Correcting for earth tides and phase unwrapping ambiguities[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1):726-733. [99] MA Zhangfeng, JIANG Mi, KHOSHMANESH M, et al. Time series phase unwrapping based on graph theory and compressed sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5204412. DOI:10.1109/TGRS.2021.3066784. [100] LI Rui, LU Xiaolei, YUN Ye. A network-optimization-based L1-norm Sparse 2-D phase unwrapping method for persistent scatterer interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5):709-713. [101] LIU Fei, PAN Bin. A new 3-D minimum cost flow phase unwrapping algorithm based on closure phase[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3):1857-1867. [102] YU Hanwen, LAN Yang, YUAN Zhihui, et al. Phase unwrapping in InSAR:a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(1):40-58. [103] ZHOU Lifan, YU Hanwen, LAN Yang. Deep convolutional neural network-based robust phase gradient estimation for two-dimensional phase unwrapping using SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7):4653-4665. [104] WU Zhipeng, WANG Teng, WANG Yingjie, et al. Deep learning for the detection and phase unwrapping of mining-induced deformation in large-scale interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5216318. DOI:10.1109/TGRS.2021.3121907. [105] 王振杰,欧吉坤,柳林涛.单频GPS快速定位中病态问题的解法研究[J].测绘学报, 2005, 34(3):196-201. WANG Zhenjie, OU Jikun, LIU Lintao. Investigation on solutions of ill-conditioned problems in rapid positioning using single frequency GPS receivers[J]. Acta Geodaetica et Cartographica Sinica, 2005, 34(3):196-201. [106] 李博峰,沈云中.顾及基线先验信息的GPS模糊度快速解算[J].测绘学报, 2008, 37(4):423-427, 432. LI Bofeng, SHEN Yunzhong. Prior baseline information based fast GPS ambiguity resolution[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(4):423-427, 432. [107] 范龙,翟国君,柴洪洲.模糊度降相关的整数分块正交化算法[J].测绘学报, 2014, 43(8):818-826. FAN Long, ZHAI Guojun, CHAI Hongzhou. Ambiguity decorrelation with integer block orthogonal ization algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(8):818-826. [108] 卢立果,刘万科,鲁铁定,等. GNSS模糊度降相关性能的条件方差平稳度评价法[J].测绘学报, 2020, 49(8):955-964. DOI:10.11947/j.AGCS.2020.20190417. LU Liguo, LIU Wanke, LU Tieding, et al. Conditional variance stationarity evaluation method for GNSS ambiguity decorrelation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(8):955-964. DOI:10.11947/j.AGCS.2020.20190417. [109] WANG Jun, FENG Yanming. Reliability of partial ambiguity fixing with multiple GNSS constellations[J]. Journal of Geodesy, 2013, 87(1):1-14. [110] FENG Yanming. GNSS three carrier ambiguity resolution using ionosphere-reduced virtual signals[J]. Journal of Geodesy, 2008, 82(12):847-862. [111] LI Bofeng, FENG Yanming, SHEN Yunzhong. Three carrier ambiguity resolution:distance-independent performance demonstrated using semi-generated triple frequency GPS signals[J]. GPS Solutions, 2010, 14(2):177-184. [112] ZHANG Zhetao, LI Bofeng, HE Xiufeng, et al. Models, methods and assessment of four-frequency carrier ambiguity resolution for BeiDou-3 observations[J]. GPS Solutions, 2020, 24(4):96. [113] ZHANG Zhetao. Code and phase multipath mitigation by using the observation-domain parameterization and its application in five-frequency GNSS ambiguity resolution[J]. GPS Solutions, 2021, 25(4):144. DOI:10.1007/s10291-021-01179-y. [114] ZHANG Xiaohong, HE Xiyang. Performance analysis of triple-frequency ambiguity resolution with BeiDou observations[J]. GPS Solutions, 2016, 20(2):269-281. [115] 吴学雨,李明峰,董思学,等.利用基于抗差垂直向方差分量估计的GPS-InSAR数据融合方法反演三维形变场[J].测绘通报, 2021(12):38-43. DOI:10.13474/j.cnki.11-2246.2021.369. WU Xueyu, LI Mingfeng, DONG Sixue, et al. GPS-InSAR data fusion method with robust vertical variance component estimation for 3D deformation field[J]. Bulletin of Surveying and mapping, 2021(12):38-43. DOI:10.13474/j.cnki.11-2246.2021.369. [116] 刘计洪,胡俊,李志伟,等. InSAR三维同震地表形变监测——窗口优化的SM-VCE算法[J].测绘学报, 2021, 50(9):1222-1239. DOI:10.11947/j.AGCS.2021.20200610. LIU Jihong, HU Jun, LI Zhiwei, et al. Estimation of 3D coseismic deformation with InSAR:an improved SM-VCE method by window optimization[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9):1222-1239. DOI:10.11947/j.AGCS.2021.20200610. [117] GNSSer. GNSS数据处理服务与交流平台[EB/OL]. 2021-22-20.http://www.gnsser.com. GNSSer. GNSS data processing service and exchange platform[EB/OL]. 2021-22-20. http://www.gnsser.com. [118] CASU F, ELEFANTE S, IMPERATORE P, et al. SBAS-DInSAR parallel processing for deformation time-series computation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(8):3285-3296. [119] 杨元喜.综合PNT体系及其关键技术[J].测绘学报, 2016, 45(5):505-510. DOI:10.11947/j.AGCS.2016.20160127. YANG Yuanxi. Concepts of comprehensive PNT and related key technologies[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5):505-510. DOI:10.11947/j.AGCS.2016.20160127. [120] ANSARI H, DE ZAN F, BAMLER R. Sequential estimator:toward efficient InSAR time series analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10):5637-5652. [121] WANG Baohang, ZHAO Chaoying, ZHANG Qin, et al. Sequential estimation of dynamic deformation parameters for SBAS-InSAR[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(6):1017-1021. [122] 吕志平,许国昌,陈正生,等.大型GNSS观测网的并行计算[J].测绘科学技术学报, 2021, 38(1):1-8. LV Zhiping, XU Guochang, CHEN Zhengsheng, et al. Parallel resolution of huge GNSS networks[J]. Journal of Geomatics Science and Technology, 2021, 38(1):1-8. [123] AUER S, GERNHARDT S, BAMLER R. Investigations on the nature of persistent scatterers based on simulation methods[C]//Proceedings of 2011 Joint Urban Remote Sensing Event. Munich, Germany:IEEE, 2011:61-64. [124] WANG Yuanyuan, ZHU Xiaoxiang, ZEISL B, et al. Fusing meter-resolution 4D InSAR point clouds and optical images for semantic urban infrastructure monitoring[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1):14-26. |
[1] | ZHANG Kefei, LI Haobo, WANG Xiaoming, ZHU Dantong, HE Qimin, LI Longjiang, HU Andong, ZHENG Nanshan, LI Huaizhan. Recent progresses and future prospectives of ground-based GNSS water vapor sounding [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1172-1191. |
[2] | DANG Yamin, YANG Qiang, WANG Wei, LIANG Yuke. Analysis on 3D crustal deformation of Qinghai-Tibet Plateau and its surrounding areas based on block model [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1192-1205. |
[3] | YUAN Yunbin, HOU Pengyu, ZHANG Baocheng. GNSS undifferenced and uncombined data processing and PPP-RTK high-precision positioning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1225-1238. |
[4] | JIN Shuanggen, WANG Qisheng, SHI Qiqi. Parameters estimation and applications from single- to five-frequency multi-GNSS precise point positioning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1239-1248. |
[5] | LI Xingxing, ZHANG Wei, YUAN Yongqiang, ZHANG Keke, WU Jiaqi, LOU Jiaqing, LI Jie, ZHENG Hongjie. Review of GNSS precise orbit determination: status, challenges, and opportunities [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1271-1293. |
[6] | LOU Liangsheng, MIAO Jian, CHEN Junli, LIU Zhiming, ZHANG Xiaowei, ZHANG Hao. Key issues of InSAR system designment based on satellite formation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1372-1385. |
[7] | XU Qiang, ZHU Xing, LI Weile, DONG Xiujun, DAI Keren, JIANG Yanan, LU Huiyan, GUO Chen. Technical progress of space-air-ground collaborative monitoring of landslide [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. |
[8] | LI Zhiwei, XU Wenbin, HU Jun, FENG Guangcai, YANG Zefa, LI Jia, ZHANG Heng, CHEN Qi, ZHU Jianjun, WANG Qijie, ZHAO Rong, DUAN Meng. Partial geoscience parameters inversion from InSAR observation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1458-1475. |
[9] | LI Zhenhong, ZHU Wu, YU Chen, ZHANG Qin, ZHNAG Chenglong, LIU Zhenjiang, ZHANG Xuesong, CHEN Bo, DU Jiantao, SONG Chuang, HAN Bingquan, ZHOU Jiawei. Interferometric synthetic aperture radar for deformation mapping: opportunities, challenges and the outlook [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1485-1519. |
[10] | SUN Zhongmiao, GUAN Bin, ZHAI Zhenhe, OUYANG Mingda. Research progress of ocean satellite altimetry and its recovery of global marine gravity field and seafloor topography model [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 923-934. |
[11] | YAO Yibin, ZHAO Qingzhi. Research progress and prospect of monitoring tropospheric water vapor by GNSS technique [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 935-952. |
[12] | LI Bofeng, QIN Yuanyang, CHEN Guang'e. BDS-3 cycle slip and data gap repair based on the geometry-free ionosphere-filter model [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 501-510. |
[13] | DENG Zhiguo, WANG Jungang, GE Maorong. The GBM rapid product and the improvement from undifferenced ambiguity resolution [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 544-555. |
[14] | WANG Jie, WANG Nazi, XU Tianhe, GAO Fan, HE Yunqiao. Sea level estimation using the combination of GNSS observations [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 201-211. |
[15] | MA Zhangfeng, JIANG Mi, LI Guihua, HUANG Teng. Effects of spatial network on time series InSAR phase unwrapping: take the Delaunay and Dijkstra networks for example [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 248-257. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||